File size: 12,226 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
from ding.rl_utils import a2c_data, a2c_error, get_gae_with_default_last_value, get_train_sample, \
a2c_error_continuous
from ding.torch_utils import Adam, to_device
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('a2c')
class A2CPolicy(Policy):
r"""
Overview:
Policy class of A2C algorithm.
"""
config = dict(
# (string) RL policy register name (refer to function "register_policy").
type='a2c',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
on_policy=True, # for a2c strictly on policy algorithm, this line should not be seen by users
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous']
action_space='discrete',
learn=dict(
# (int) for a2c, update_per_collect must be 1.
update_per_collect=1, # fixed value, this line should not be modified by users
batch_size=64,
learning_rate=0.001,
# (List[float])
betas=(0.9, 0.999),
# (float)
eps=1e-8,
# (float)
grad_norm=0.5,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) loss weight of the value network, the weight of policy network is set to 1
value_weight=0.5,
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1
entropy_weight=0.01,
# (bool) Whether to normalize advantage. Default to False.
adv_norm=False,
ignore_done=False,
),
collect=dict(
# (int) collect n_sample data, train model n_iteration times
# n_sample=80,
unroll_len=1,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.9,
# (float) the trade-off factor lambda to balance 1step td and mc
gae_lambda=0.95,
),
eval=dict(),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'vac', ['ding.model.template.vac']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config, main and target models.
"""
assert self._cfg.action_space in ["continuous", "discrete"]
# Optimizer
self._optimizer = Adam(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
betas=self._cfg.learn.betas,
eps=self._cfg.learn.eps
)
# Algorithm config
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._adv_norm = self._cfg.learn.adv_norm
self._grad_norm = self._cfg.learn.grad_norm
# Main and target models
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs','adv']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including current lr and loss.
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
# forward
output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
adv = batch['adv']
return_ = batch['value'] + adv
if self._adv_norm:
# norm adv in total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
error_data = a2c_data(output['logit'], batch['action'], output['value'], adv, return_, batch['weight'])
# Calculate A2C loss
if self._action_space == 'continuous':
a2c_loss = a2c_error_continuous(error_data)
elif self._action_space == 'discrete':
a2c_loss = a2c_error(error_data)
wv, we = self._value_weight, self._entropy_weight
total_loss = a2c_loss.policy_loss + wv * a2c_loss.value_loss - we * a2c_loss.entropy_loss
# ====================
# A2C-learning update
# ====================
self._optimizer.zero_grad()
total_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
list(self._learn_model.parameters()),
max_norm=self._grad_norm,
)
self._optimizer.step()
# =============
# after update
# =============
# only record last updates information in logger
return {
'cur_lr': self._optimizer.param_groups[0]['lr'],
'total_loss': total_loss.item(),
'policy_loss': a2c_loss.policy_loss.item(),
'value_loss': a2c_loss.value_loss.item(),
'entropy_loss': a2c_loss.entropy_loss.item(),
'adv_abs_max': adv.abs().max().item(),
'grad_norm': grad_norm,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
assert self._cfg.action_space in ["continuous", "discrete"]
self._unroll_len = self._cfg.collect.unroll_len
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
elif self._action_space == 'discrete':
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
self._collect_model.reset()
# Algorithm
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor_critic')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': model_output['action'],
'value': model_output['value'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and the n step return data, then sample from the n_step return data
Arguments:
- data (:obj:`list`): The trajectory's buffer list
Returns:
- samples (:obj:`dict`): The training samples generated
"""
data = get_gae_with_default_last_value(
data,
data[-1]['done'],
gamma=self._gamma,
gae_lambda=self._gae_lambda,
cuda=self._cuda,
)
return get_train_sample(data, self._unroll_len)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
assert self._cfg.action_space in ["continuous", "discrete"]
self._action_space = self._cfg.action_space
if self._action_space == 'continuous':
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
elif self._action_space == 'discrete':
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'grad_norm']
|