File size: 16,201 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import copy
import torch

from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('atoc')
class ATOCPolicy(Policy):
    r"""
    Overview:
        Policy class of ATOC algorithm.
    Interface:
        __init__, set_setting, __repr__, state_dict_handle
    Property:
        learn_mode, collect_mode, eval_mode
    """

    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='atoc',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        model=dict(
            # (bool) Whether to use communication module in ATOC, if not, it is a multi-agent DDPG
            communication=True,
            # (int) The number of thought size
            thought_size=8,
            # (int) The number of agent for each communication group
            agent_per_group=2,
        ),
        learn=dict(
            # (int) Collect n_sample data, update model n_iteration time
            update_per_collect=5,
            # (int) The number of data for a train iteration
            batch_size=64,
            # (float) Gradient-descent step size of actor
            learning_rate_actor=0.001,
            # (float) Gradient-descent step size of critic
            learning_rate_critic=0.001,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1]
            target_theta=0.005,
            # (float) Discount factor for future reward, defaults int [0, 1]
            discount_factor=0.99,
            # (bool) Whether to use communication module in ATOC, if not, it is a multi-agent DDPG
            communication=True,
            # (int) The frequency of actor update, each critic update
            actor_update_freq=1,
            # (bool) Whether use noise in action output when learning
            noise=True,
            # (float) The std of noise distribution for target policy smooth
            noise_sigma=0.15,
            # (float, float) The minimum and maximum value of noise
            noise_range=dict(
                min=-0.5,
                max=0.5,
            ),
            # (bool) Whether to use reward batch norm in the total batch
            reward_batch_norm=False,
            ignore_done=False,
        ),
        collect=dict(
            # (int) Collect n_sample data, update model n_iteration time
            # n_sample=64,
            # (int) Unroll length of a train iteration(gradient update step)
            unroll_len=1,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) The std of noise distribution for exploration
            noise_sigma=0.4,
        ),
        eval=dict(),
        other=dict(
            replay_buffer=dict(
                # (int) The max size of replay buffer
                replay_buffer_size=100000,
                # (int) The max use count of data, if count is bigger than this value, the data will be removed
                max_use=10,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        return 'atoc', ['ding.model.template.atoc']

    def _init_learn(self) -> None:
        r"""
        Overview:
            Learn mode init method. Called by ``self.__init__``.
            Init actor and critic optimizers, algorithm config, main and target models.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight
        # algorithm config
        self._communication = self._cfg.learn.communication
        self._gamma = self._cfg.learn.discount_factor
        self._actor_update_freq = self._cfg.learn.actor_update_freq
        # actor and critic optimizer
        self._optimizer_actor = Adam(
            self._model.actor.parameters(),
            lr=self._cfg.learn.learning_rate_actor,
        )
        self._optimizer_critic = Adam(
            self._model.critic.parameters(),
            lr=self._cfg.learn.learning_rate_critic,
        )
        if self._communication:
            self._optimizer_actor_attention = Adam(
                self._model.actor.attention.parameters(),
                lr=self._cfg.learn.learning_rate_actor,
            )
        self._reward_batch_norm = self._cfg.learn.reward_batch_norm

        # main and target models
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_theta}
        )
        if self._cfg.learn.noise:
            self._target_model = model_wrap(
                self._target_model,
                wrapper_name='action_noise',
                noise_type='gauss',
                noise_kwargs={
                    'mu': 0.0,
                    'sigma': self._cfg.learn.noise_sigma
                },
                noise_range=self._cfg.learn.noise_range
            )
        self._learn_model = model_wrap(self._model, wrapper_name='base')
        self._learn_model.reset()
        self._target_model.reset()

        self._forward_learn_cnt = 0  # count iterations

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including at least actor and critic lr, different losses.
        """
        loss_dict = {}
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # critic learn forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        next_obs = data['next_obs']
        reward = data['reward']
        if self._reward_batch_norm:
            reward = (reward - reward.mean()) / (reward.std() + 1e-8)
        # current q value
        q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
        # target q value.
        with torch.no_grad():
            next_action = self._target_model.forward(next_obs, mode='compute_actor')['action']
            next_data = {'obs': next_obs, 'action': next_action}
            target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
        td_data = v_1step_td_data(q_value.mean(-1), target_q_value.mean(-1), reward, data['done'], data['weight'])
        critic_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma)
        loss_dict['critic_loss'] = critic_loss
        # ================
        # critic update
        # ================
        self._optimizer_critic.zero_grad()
        critic_loss.backward()
        self._optimizer_critic.step()
        # ===============================
        # actor learn forward and update
        # ===============================
        # actor updates every ``self._actor_update_freq`` iters
        if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
            if self._communication:
                output = self._learn_model.forward(data['obs'], mode='compute_actor', get_delta_q=False)
                output['delta_q'] = data['delta_q']
                attention_loss = self._learn_model.forward(output, mode='optimize_actor_attention')['loss']
                loss_dict['attention_loss'] = attention_loss
                self._optimizer_actor_attention.zero_grad()
                attention_loss.backward()
                self._optimizer_actor_attention.step()

            output = self._learn_model.forward(data['obs'], mode='compute_actor', get_delta_q=False)

            critic_input = {'obs': data['obs'], 'action': output['action']}
            actor_loss = -self._learn_model.forward(critic_input, mode='compute_critic')['q_value'].mean()
            loss_dict['actor_loss'] = actor_loss
            # actor update
            self._optimizer_actor.zero_grad()
            actor_loss.backward()
            self._optimizer_actor.step()
        # =============
        # after update
        # =============
        loss_dict['total_loss'] = sum(loss_dict.values())
        self._forward_learn_cnt += 1
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr_actor': self._optimizer_actor.defaults['lr'],
            'cur_lr_critic': self._optimizer_critic.defaults['lr'],
            'priority': td_error_per_sample.abs().tolist(),
            'q_value': q_value.mean().item(),
            **loss_dict,
        }

    def _state_dict_learn(self) -> Dict[str, Any]:
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer_actor': self._optimizer_actor.state_dict(),
            'optimizer_critic': self._optimizer_critic.state_dict(),
            'optimize_actor_attention': self._optimizer_actor_attention.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer_actor.load_state_dict(state_dict['optimizer_actor'])
        self._optimizer_critic.load_state_dict(state_dict['optimizer_critic'])
        self._optimizer_actor_attention.load_state_dict(state_dict['optimize_actor_attention'])

    def _init_collect(self) -> None:
        r"""
        Overview:
            Collect mode init method. Called by ``self.__init__``.
            Init traj and unroll length, collect model.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        # collect model
        self._collect_model = model_wrap(
            self._model,
            wrapper_name='action_noise',
            noise_type='gauss',
            noise_kwargs={
                'mu': 0.0,
                'sigma': self._cfg.collect.noise_sigma
            },
            noise_range=None,  # no noise clip in actor
        )
        self._collect_model.reset()

    def _forward_collect(self, data: dict) -> dict:
        r"""
        Overview:
            Forward function of collect mode.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
        Returns:
            - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor', get_delta_q=True)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
                (here 'obs' indicates obs after env step, i.e. next_obs).
        Return:
            - transition (:obj:`Dict[str, Any]`): Dict type transition data.
        """
        if self._communication:
            transition = {
                'obs': obs,
                'next_obs': timestep.obs,
                'action': model_output['action'],
                'delta_q': model_output['delta_q'],
                'reward': timestep.reward,
                'done': timestep.done,
            }
        else:
            transition = {
                'obs': obs,
                'next_obs': timestep.obs,
                'action': model_output['action'],
                'reward': timestep.reward,
                'done': timestep.done,
            }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        if self._communication:
            delta_q_batch = [d['delta_q'] for d in data]
            delta_min = torch.stack(delta_q_batch).min()
            delta_max = torch.stack(delta_q_batch).max()
            for i in range(len(data)):
                data[i]['delta_q'] = (data[i]['delta_q'] - delta_min) / (delta_max - delta_min + 1e-8)
        return get_train_sample(data, self._unroll_len)

    def _init_eval(self) -> None:
        r"""
        Overview:
            Evaluate mode init method. Called by ``self.__init__``.
            Init eval model. Unlike learn and collect model, eval model does not need noise.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='base')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        r"""
        Overview:
            Forward function of eval mode, similar to ``self._forward_collect``.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
                values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
        Returns:
            - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
        ReturnsKeys
            - necessary: ``action``
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _monitor_vars_learn(self) -> List[str]:
        r"""
        Overview:
            Return variables' name if variables are to used in monitor.
        Returns:
            - vars (:obj:`List[str]`): Variables' name list.
        """
        return [
            'cur_lr_actor',
            'cur_lr_critic',
            'critic_loss',
            'actor_loss',
            'attention_loss',
            'total_loss',
            'q_value',
        ]