File size: 15,386 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy

from ding.torch_utils import RMSprop, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \
    v_nstep_td_data, v_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .qmix import QMIXPolicy


@POLICY_REGISTRY.register('madqn')
class MADQNPolicy(QMIXPolicy):
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='madqn',
        # (bool) Whether to use cuda for network.
        cuda=True,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        nstep=3,
        learn=dict(
            update_per_collect=20,
            batch_size=32,
            learning_rate=0.0005,
            clip_value=100,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Target network update momentum parameter.
            # in [0, 1].
            target_update_theta=0.008,
            # (float) The discount factor for future rewards,
            # in [0, 1].
            discount_factor=0.99,
            # (bool) Whether to use double DQN mechanism(target q for surpassing over estimation)
            double_q=False,
            weight_decay=1e-5,
        ),
        collect=dict(
            # (int) Only one of [n_sample, n_episode] shoule be set
            n_episode=32,
            # (int) Cut trajectories into pieces with length "unroll_len", the length of timesteps
            # in each forward when training. In qmix, it is greater than 1 because there is RNN.
            unroll_len=10,
        ),
        eval=dict(),
        other=dict(
            eps=dict(
                # (str) Type of epsilon decay
                type='exp',
                # (float) Start value for epsilon decay, in [0, 1].
                # 0 means not use epsilon decay.
                start=1,
                # (float) Start value for epsilon decay, in [0, 1].
                end=0.05,
                # (int) Decay length(env step)
                decay=50000,
            ),
            replay_buffer=dict(
                replay_buffer_size=5000,
                # (int) The maximum reuse times of each data
                max_reuse=1e+9,
                max_staleness=1e+9,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default model setting for demonstration.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
        """
        return 'madqn', ['ding.model.template.madqn']

    def _init_learn(self) -> None:
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in QMIX"
        self._optimizer_current = RMSprop(
            params=self._model.current.parameters(),
            lr=self._cfg.learn.learning_rate,
            alpha=0.99,
            eps=0.00001,
            weight_decay=self._cfg.learn.weight_decay
        )
        self._optimizer_cooperation = RMSprop(
            params=self._model.cooperation.parameters(),
            lr=self._cfg.learn.learning_rate,
            alpha=0.99,
            eps=0.00001,
            weight_decay=self._cfg.learn.weight_decay
        )
        self._gamma = self._cfg.learn.discount_factor
        self._nstep = self._cfg.nstep
        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
            init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        )
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Any]) -> dict:
        r"""
        Overview:
            Preprocess the data to fit the required data format for learning
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
        Returns:
            - data (:obj:`Dict[str, Any]`): the processed data, from \
                [len=B, ele={dict_key: [len=T, ele=Tensor(any_dims)]}] -> {dict_key: Tensor([T, B, any_dims])}
        """
        # data preprocess
        data = timestep_collate(data)
        if self._cuda:
            data = to_device(data, self._device)
        data['weight'] = data.get('weight', None)
        data['done'] = data['done'].float()
        return data

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
                np.ndarray or dict/list combinations.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
                recorded in text log and tensorboard, values are python scalar or a list of scalars.
        ArgumentsKeys:
            - necessary: ``obs``, ``next_obs``, ``action``, ``reward``, ``weight``, ``prev_state``, ``done``
        ReturnsKeys:
            - necessary: ``cur_lr``, ``total_loss``
                - cur_lr (:obj:`float`): Current learning rate
                - total_loss (:obj:`float`): The calculated loss
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # Q-mix forward
        # ====================
        self._learn_model.train()
        self._target_model.train()
        # for hidden_state plugin, we need to reset the main model and target model
        self._learn_model.reset(state=data['prev_state'][0])
        self._target_model.reset(state=data['prev_state'][0])
        inputs = {'obs': data['obs'], 'action': data['action']}

        total_q = self._learn_model.forward(inputs, single_step=False)['total_q']

        if self._cfg.learn.double_q:
            next_inputs = {'obs': data['next_obs']}
            self._learn_model.reset(state=data['prev_state'][1])
            logit_detach = self._learn_model.forward(next_inputs, single_step=False)['logit'].clone().detach()
            next_inputs = {'obs': data['next_obs'], 'action': logit_detach.argmax(dim=-1)}
        else:
            next_inputs = {'obs': data['next_obs']}
        with torch.no_grad():
            target_total_q = self._target_model.forward(next_inputs, cooperation=True, single_step=False)['total_q']

        if self._nstep == 1:

            v_data = v_1step_td_data(total_q, target_total_q, data['reward'], data['done'], data['weight'])
            loss, td_error_per_sample = v_1step_td_error(v_data, self._gamma)
            # for visualization
            with torch.no_grad():
                if data['done'] is not None:
                    target_v = self._gamma * (1 - data['done']) * target_total_q + data['reward']
                else:
                    target_v = self._gamma * target_total_q + data['reward']
        else:
            data['reward'] = data['reward'].permute(0, 2, 1).contiguous()
            loss = []
            td_error_per_sample = []
            for t in range(self._cfg.collect.unroll_len):
                v_data = v_nstep_td_data(
                    total_q[t], target_total_q[t], data['reward'][t], data['done'][t], data['weight'], self._gamma
                )
                # calculate v_nstep_td critic_loss
                loss_i, td_error_per_sample_i = v_nstep_td_error(v_data, self._gamma, self._nstep)
                loss.append(loss_i)
                td_error_per_sample.append(td_error_per_sample_i)
            loss = sum(loss) / (len(loss) + 1e-8)
            td_error_per_sample = sum(td_error_per_sample) / (len(td_error_per_sample) + 1e-8)

        self._optimizer_current.zero_grad()
        loss.backward()
        grad_norm = torch.nn.utils.clip_grad_norm_(self._model.current.parameters(), self._cfg.learn.clip_value)
        self._optimizer_current.step()

        # cooperation
        self._learn_model.reset(state=data['prev_state'][0])
        self._target_model.reset(state=data['prev_state'][0])
        cooperation_total_q = self._learn_model.forward(inputs, cooperation=True, single_step=False)['total_q']
        next_inputs = {'obs': data['next_obs']}
        with torch.no_grad():
            cooperation_target_total_q = self._target_model.forward(
                next_inputs, cooperation=True, single_step=False
            )['total_q']

        if self._nstep == 1:
            v_data = v_1step_td_data(
                cooperation_total_q, cooperation_target_total_q, data['reward'], data['done'], data['weight']
            )
            cooperation_loss, _ = v_1step_td_error(v_data, self._gamma)
        else:
            cooperation_loss_all = []
            for t in range(self._cfg.collect.unroll_len):
                v_data = v_nstep_td_data(
                    cooperation_total_q[t], cooperation_target_total_q[t], data['reward'][t], data['done'][t],
                    data['weight'], self._gamma
                )
                cooperation_loss, _ = v_nstep_td_error(v_data, self._gamma, self._nstep)
                cooperation_loss_all.append(cooperation_loss)
            cooperation_loss = sum(cooperation_loss_all) / (len(cooperation_loss_all) + 1e-8)
        self._optimizer_cooperation.zero_grad()
        cooperation_loss.backward()
        cooperation_grad_norm = torch.nn.utils.clip_grad_norm_(
            self._model.cooperation.parameters(), self._cfg.learn.clip_value
        )
        self._optimizer_cooperation.step()

        # =============
        # after update
        # =============
        self._target_model.update(self._learn_model.state_dict())
        return {
            'cur_lr': self._optimizer_current.defaults['lr'],
            'total_loss': loss.item(),
            'total_q': total_q.mean().item() / self._cfg.model.agent_num,
            'target_total_q': target_total_q.mean().item() / self._cfg.model.agent_num,
            'grad_norm': grad_norm,
            'cooperation_grad_norm': cooperation_grad_norm,
            'cooperation_loss': cooperation_loss.item(),
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        r"""
        Overview:
            Reset learn model to the state indicated by data_id
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id that store the state and we will reset\
                the model state to the state indicated by data_id
        """
        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        r"""
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer_current': self._optimizer_current.state_dict(),
            'optimizer_cooperation': self._optimizer_cooperation.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer_current.load_state_dict(state_dict['optimizer_current'])
        self._optimizer_cooperation.load_state_dict(state_dict['optimizer_cooperation'])

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        r"""
        Overview:
            Generate dict type transition data from inputs.
        Arguments:
            - obs (:obj:`Any`): Env observation
            - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
            - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
                (here 'obs' indicates obs after env step).
        Returns:
            - transition (:obj:`dict`): Dict type transition data, including 'obs', 'next_obs', 'prev_state',\
                'action', 'reward', 'done'
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'prev_state': model_output['prev_state'],
            'action': model_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        r"""
        Overview:
            Get the train sample from trajectory.
        Arguments:
            - data (:obj:`list`): The trajectory's cache
        Returns:
            - samples (:obj:`dict`): The training samples generated
        """
        if self._cfg.nstep == 1:
            return get_train_sample(data, self._unroll_len)
        else:
            data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
            return get_train_sample(data, self._unroll_len)

    def _monitor_vars_learn(self) -> List[str]:
        r"""
        Overview:
            Return variables' name if variables are to used in monitor.
        Returns:
            - vars (:obj:`List[str]`): Variables' name list.
        """
        return [
            'cur_lr', 'total_loss', 'total_q', 'target_total_q', 'grad_norm', 'target_reward_total_q',
            'cooperation_grad_norm', 'cooperation_loss'
        ]