File size: 11,739 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from typing import List, Dict, Any, Optional
from collections import deque
import copy
import torch

from ding.utils import list_split, lists_to_dicts
from ding.rl_utils.gae import gae, gae_data


class Adder(object):
    """
    Overview:
        Adder is a component that handles different transformations and calculations for transitions
        in Collector Module(data generation and processing), such as GAE, n-step return, transition sampling etc.
    Interface:
        __init__, get_gae, get_gae_with_default_last_value, get_nstep_return_data, get_train_sample
    """

    @classmethod
    def get_gae(cls, data: List[Dict[str, Any]], last_value: torch.Tensor, gamma: float, gae_lambda: float,
                cuda: bool) -> List[Dict[str, Any]]:
        """
        Overview:
            Get GAE advantage for stacked transitions(T timestep, 1 batch). Call ``gae`` for calculation.
        Arguments:
            - data (:obj:`list`): Transitions list, each element is a transition dict with at least ['value', 'reward']
            - last_value (:obj:`torch.Tensor`): The last value(i.e.: the T+1 timestep)
            - gamma (:obj:`float`): The future discount factor, should be in [0, 1], defaults to 0.99.
            - gae_lambda (:obj:`float`): GAE lambda parameter, should be in [0, 1], defaults to 0.97, \
            when lambda -> 0, it induces bias, but when lambda -> 1, it has high variance due to the sum of terms.
            - cuda (:obj:`bool`): Whether use cuda in GAE computation
        Returns:
            - data (:obj:`list`): transitions list like input one, but each element owns extra advantage key 'adv'
        Examples:
            >>> B, T = 2, 3 # batch_size, timestep
            >>> data = [dict(value=torch.randn(B), reward=torch.randn(B)) for _ in range(T)]
            >>> last_value = torch.randn(B)
            >>> gamma = 0.99
            >>> gae_lambda = 0.95
            >>> cuda = False
            >>> data = Adder.get_gae(data, last_value, gamma, gae_lambda, cuda)
        """
        value = torch.stack([d['value'] for d in data])
        next_value = torch.stack([d['value'] for d in data][1:] + [last_value])
        reward = torch.stack([d['reward'] for d in data])
        if cuda:
            value = value.cuda()
            next_value = next_value.cuda()
            reward = reward.cuda()

        adv = gae(gae_data(value, next_value, reward, None, None), gamma, gae_lambda)

        if cuda:
            adv = adv.cpu()
        for i in range(len(data)):
            data[i]['adv'] = adv[i]
        return data

    @classmethod
    def get_gae_with_default_last_value(cls, data: deque, done: bool, gamma: float, gae_lambda: float,
                                        cuda: bool) -> List[Dict[str, Any]]:
        """
        Overview:
            Like ``get_gae`` above to get GAE advantage for stacked transitions. However, this function is designed in
            case ``last_value`` is not passed. If transition is not done yet, it wouold assign last value in ``data``
            as ``last_value``, discard the last element in ``data``(i.e. len(data) would decrease by 1), and then call
            ``get_gae``. Otherwise it would make ``last_value`` equal to 0.
        Arguments:
            - data (:obj:`deque`): Transitions list, each element is a transition dict with \
                at least['value', 'reward']
            - done (:obj:`bool`): Whether the transition reaches the end of an episode(i.e. whether the env is done)
            - gamma (:obj:`float`): The future discount factor, should be in [0, 1], defaults to 0.99.
            - gae_lambda (:obj:`float`): GAE lambda parameter, should be in [0, 1], defaults to 0.97, \
            when lambda -> 0, it induces bias, but when lambda -> 1, it has high variance due to the sum of terms.
            - cuda (:obj:`bool`): Whether use cuda in GAE computation
        Returns:
            - data (:obj:`List[Dict[str, Any]]`): transitions list like input one, but each element owns \
                extra advantage key 'adv'
        Examples:
            >>> B, T = 2, 3 # batch_size, timestep
            >>> data = [dict(value=torch.randn(B), reward=torch.randn(B)) for _ in range(T)]
            >>> done = False
            >>> gamma = 0.99
            >>> gae_lambda = 0.95
            >>> cuda = False
            >>> data = Adder.get_gae_with_default_last_value(data, done, gamma, gae_lambda, cuda)
        """
        if done:
            last_value = torch.zeros_like(data[-1]['value'])
        else:
            last_data = data.pop()
            last_value = last_data['value']
        return cls.get_gae(data, last_value, gamma, gae_lambda, cuda)

    @classmethod
    def get_nstep_return_data(
            cls,
            data: deque,
            nstep: int,
            cum_reward=False,
            correct_terminate_gamma=True,
            gamma=0.99,
    ) -> deque:
        """
        Overview:
            Process raw traj data by updating keys ['next_obs', 'reward', 'done'] in data's dict element.
        Arguments:
            - data (:obj:`deque`): Transitions list, each element is a transition dict
            - nstep (:obj:`int`): Number of steps. If equals to 1, return ``data`` directly; \
                Otherwise update with nstep value.
        Returns:
            - data (:obj:`deque`): Transitions list like input one, but each element updated with nstep value.
        Examples:
            >>> data = [dict(
            >>>     obs=torch.randn(B),
            >>>     reward=torch.randn(1),
            >>>     next_obs=torch.randn(B),
            >>>     done=False) for _ in range(T)]
            >>> nstep = 2
            >>> data = Adder.get_nstep_return_data(data, nstep)
        """
        if nstep == 1:
            return data
        fake_reward = torch.zeros(1)
        next_obs_flag = 'next_obs' in data[0]
        for i in range(len(data) - nstep):
            # update keys ['next_obs', 'reward', 'done'] with their n-step value
            if next_obs_flag:
                data[i]['next_obs'] = data[i + nstep]['obs']  # do not need deepcopy
            if cum_reward:
                data[i]['reward'] = sum([data[i + j]['reward'] * (gamma ** j) for j in range(nstep)])
            else:
                data[i]['reward'] = torch.cat([data[i + j]['reward'] for j in range(nstep)])
            data[i]['done'] = data[i + nstep - 1]['done']
            if correct_terminate_gamma:
                data[i]['value_gamma'] = gamma ** nstep
        for i in range(max(0, len(data) - nstep), len(data)):
            if next_obs_flag:
                data[i]['next_obs'] = data[-1]['next_obs']  # do not need deepcopy
            if cum_reward:
                data[i]['reward'] = sum([data[i + j]['reward'] * (gamma ** j) for j in range(len(data) - i)])
            else:
                data[i]['reward'] = torch.cat(
                    [data[i + j]['reward']
                     for j in range(len(data) - i)] + [fake_reward for _ in range(nstep - (len(data) - i))]
                )
            data[i]['done'] = data[-1]['done']
            if correct_terminate_gamma:
                data[i]['value_gamma'] = gamma ** (len(data) - i - 1)
        return data

    @classmethod
    def get_train_sample(
            cls,
            data: List[Dict[str, Any]],
            unroll_len: int,
            last_fn_type: str = 'last',
            null_transition: Optional[dict] = None
    ) -> List[Dict[str, Any]]:
        """
        Overview:
            Process raw traj data by updating keys ['next_obs', 'reward', 'done'] in data's dict element.
            If ``unroll_len`` equals to 1, which means no process is needed, can directly return ``data``.
            Otherwise, ``data`` will be splitted according to ``unroll_len``, process residual part according to
            ``last_fn_type`` and call ``lists_to_dicts`` to form sampled training data.
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): Transitions list, each element is a transition dict
            - unroll_len (:obj:`int`): Learn training unroll length
            - last_fn_type (:obj:`str`): The method type name for dealing with last residual data in a traj \
                after splitting, should be in ['last', 'drop', 'null_padding']
            - null_transition (:obj:`Optional[dict]`): Dict type null transition, used in ``null_padding``
        Returns:
            - data (:obj:`List[Dict[str, Any]]`): Transitions list processed after unrolling
        """
        if unroll_len == 1:
            return data
        else:
            # cut data into pieces whose length is unroll_len
            split_data, residual = list_split(data, step=unroll_len)

            def null_padding():
                template = copy.deepcopy(residual[0])
                template['null'] = True
                if isinstance(template['obs'], dict):
                    template['obs'] = {k: torch.zeros_like(v) for k, v in template['obs'].items()}
                else:
                    template['obs'] = torch.zeros_like(template['obs'])
                if 'action' in template:
                    template['action'] = torch.zeros_like(template['action'])
                template['done'] = True
                template['reward'] = torch.zeros_like(template['reward'])
                if 'value_gamma' in template:
                    template['value_gamma'] = 0.
                null_data = [cls._get_null_transition(template, null_transition) for _ in range(miss_num)]
                return null_data

            if residual is not None:
                miss_num = unroll_len - len(residual)
                if last_fn_type == 'drop':
                    # drop the residual part
                    pass
                elif last_fn_type == 'last':
                    if len(split_data) > 0:
                        # copy last datas from split_data's last element, and insert in front of residual
                        last_data = copy.deepcopy(split_data[-1][-miss_num:])
                        split_data.append(last_data + residual)
                    else:
                        # get null transitions using ``null_padding``, and insert behind residual
                        null_data = null_padding()
                        split_data.append(residual + null_data)
                elif last_fn_type == 'null_padding':
                    # same to the case of 'last' type and split_data is empty
                    null_data = null_padding()
                    split_data.append(residual + null_data)
            # collate unroll_len dicts according to keys
            if len(split_data) > 0:
                split_data = [lists_to_dicts(d, recursive=True) for d in split_data]
            return split_data

    @classmethod
    def _get_null_transition(cls, template: dict, null_transition: Optional[dict] = None) -> dict:
        """
        Overview:
            Get null transition for padding. If ``cls._null_transition`` is None, return input ``template`` instead.
        Arguments:
            - template (:obj:`dict`): The template for null transition.
            - null_transition (:obj:`Optional[dict]`): Dict type null transition, used in ``null_padding``
        Returns:
            - null_transition (:obj:`dict`): The deepcopied null transition.
        """
        if null_transition is not None:
            return copy.deepcopy(null_transition)
        else:
            return copy.deepcopy(template)


get_gae = Adder.get_gae
get_gae_with_default_last_value = Adder.get_gae_with_default_last_value
get_nstep_return_data = Adder.get_nstep_return_data
get_train_sample = Adder.get_train_sample