File size: 5,659 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pytest
import copy
from collections import deque
import numpy as np
import torch
from ding.rl_utils import get_gae, get_gae_with_default_last_value, get_nstep_return_data, get_train_sample


@pytest.mark.unittest
class TestAdder:

    def get_transition(self):
        return {
            'value': torch.randn(1),
            'reward': torch.rand(1),
            'action': torch.rand(3),
            'other': np.random.randint(0, 10, size=(4, )),
            'obs': torch.randn(3),
            'done': False
        }

    def get_transition_multi_agent(self):
        return {
            'value': torch.randn(1, 8),
            'reward': torch.rand(1, 1),
            'action': torch.rand(3),
            'other': np.random.randint(0, 10, size=(4, )),
            'obs': torch.randn(3),
            'done': False
        }

    def test_get_gae(self):
        transitions = deque([self.get_transition() for _ in range(10)])
        last_value = torch.randn(1)
        output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False)
        for i in range(len(output)):
            o = output[i]
            assert 'adv' in o.keys()
            for k, v in o.items():
                if k == 'adv':
                    assert isinstance(v, torch.Tensor)
                    assert v.shape == (1, )
                else:
                    if k == 'done':
                        assert v == transitions[i][k]
                    else:
                        assert (v == transitions[i][k]).all()
        output1 = get_gae_with_default_last_value(
            copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False
        )
        for i in range(len(output)):
            assert output[i]['adv'].ne(output1[i]['adv'])

        data = copy.deepcopy(transitions)
        data.append({'value': last_value})
        output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False)
        for i in range(len(output)):
            assert output[i]['adv'].eq(output2[i]['adv'])

    def test_get_gae_multi_agent(self):
        transitions = deque([self.get_transition_multi_agent() for _ in range(10)])
        last_value = torch.randn(1, 8)
        output = get_gae(transitions, last_value, gamma=0.99, gae_lambda=0.97, cuda=False)
        for i in range(len(output)):
            o = output[i]
            assert 'adv' in o.keys()
            for k, v in o.items():
                if k == 'adv':
                    assert isinstance(v, torch.Tensor)
                    assert v.shape == (
                        1,
                        8,
                    )
                else:
                    if k == 'done':
                        assert v == transitions[i][k]
                    else:
                        assert (v == transitions[i][k]).all()
        output1 = get_gae_with_default_last_value(
            copy.deepcopy(transitions), True, gamma=0.99, gae_lambda=0.97, cuda=False
        )
        for i in range(len(output)):
            for j in range(output[i]['adv'].shape[1]):
                assert output[i]['adv'][0][j].ne(output1[i]['adv'][0][j])

        data = copy.deepcopy(transitions)
        data.append({'value': last_value})
        output2 = get_gae_with_default_last_value(data, False, gamma=0.99, gae_lambda=0.97, cuda=False)
        for i in range(len(output)):
            for j in range(output[i]['adv'].shape[1]):
                assert output[i]['adv'][0][j].eq(output2[i]['adv'][0][j])

    def test_get_nstep_return_data(self):
        nstep = 3
        data = deque([self.get_transition() for _ in range(10)])
        output_data = get_nstep_return_data(data, nstep=nstep)
        assert len(output_data) == 10
        for i, o in enumerate(output_data):
            assert o['reward'].shape == (nstep, )
            if i >= 10 - nstep + 1:
                assert o['done'] is data[-1]['done']
                assert o['reward'][-(i - 10 + nstep):].sum() == 0

        data = deque([self.get_transition() for _ in range(12)])
        output_data = get_nstep_return_data(data, nstep=nstep)
        assert len(output_data) == 12

    def test_get_train_sample(self):
        data = [self.get_transition() for _ in range(10)]
        output = get_train_sample(data, unroll_len=1, last_fn_type='drop')
        assert len(output) == 10

        output = get_train_sample(data, unroll_len=4, last_fn_type='drop')
        assert len(output) == 2
        for o in output:
            for v in o.values():
                assert len(v) == 4

        output = get_train_sample(data, unroll_len=4, last_fn_type='null_padding')
        assert len(output) == 3
        for o in output:
            for v in o.values():
                assert len(v) == 4
        assert output[-1]['done'] == [False, False, True, True]
        for i in range(1, 10 % 4 + 1):
            assert id(output[-1]['obs'][-i]) != id(output[-1]['obs'][0])

        output = get_train_sample(data, unroll_len=4, last_fn_type='last')
        assert len(output) == 3
        for o in output:
            for v in o.values():
                assert len(v) == 4
        miss_num = 4 - 10 % 4
        for i in range(10 % 4):
            assert id(output[-1]['obs'][i]) != id(output[-2]['obs'][miss_num + i])

        output = get_train_sample(data, unroll_len=11, last_fn_type='last')
        assert len(output) == 1
        assert len(output[0]['obs']) == 11
        assert output[-1]['done'][-1] is True
        assert output[-1]['done'][0] is False
        assert id(output[-1]['obs'][-1]) != id(output[-1]['obs'][0])


test = TestAdder()
test.test_get_gae_multi_agent()