File size: 3,731 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import pytest
from itertools import product
import numpy as np
import torch
from ding.rl_utils import ppo_data, ppo_error, ppo_error_continuous
from ding.rl_utils.ppo import shape_fn_ppo
use_value_clip_args = [True, False]
dual_clip_args = [None, 5.0]
random_weight = torch.rand(4) + 1
weight_args = [None, random_weight]
args = [item for item in product(*[use_value_clip_args, dual_clip_args, weight_args])]
@pytest.mark.unittest
def test_shape_fn_ppo():
data = ppo_data(torch.randn(3, 5, 8), None, None, None, None, None, None, None)
shape1 = shape_fn_ppo([data], {})
shape2 = shape_fn_ppo([], {'data': data})
assert shape1 == shape2 == (3, 5, 8)
@pytest.mark.unittest
@pytest.mark.parametrize('use_value_clip, dual_clip, weight', args)
def test_ppo(use_value_clip, dual_clip, weight):
B, N = 4, 32
logit_new = torch.randn(B, N).requires_grad_(True)
logit_old = logit_new + torch.rand_like(logit_new) * 0.1
action = torch.randint(0, N, size=(B, ))
value_new = torch.randn(B).requires_grad_(True)
value_old = value_new + torch.rand_like(value_new) * 0.1
adv = torch.rand(B)
return_ = torch.randn(B) * 2
data = ppo_data(logit_new, logit_old, action, value_new, value_old, adv, return_, weight)
loss, info = ppo_error(data, use_value_clip=use_value_clip, dual_clip=dual_clip)
assert all([l.shape == tuple() for l in loss])
assert all([np.isscalar(i) for i in info])
assert logit_new.grad is None
assert value_new.grad is None
total_loss = sum(loss)
total_loss.backward()
assert isinstance(logit_new.grad, torch.Tensor)
assert isinstance(value_new.grad, torch.Tensor)
@pytest.mark.unittest
def test_mappo():
B, A, N = 4, 8, 32
logit_new = torch.randn(B, A, N).requires_grad_(True)
logit_old = logit_new + torch.rand_like(logit_new) * 0.1
action = torch.randint(0, N, size=(B, A))
value_new = torch.randn(B, A).requires_grad_(True)
value_old = value_new + torch.rand_like(value_new) * 0.1
adv = torch.rand(B, A)
return_ = torch.randn(B, A) * 2
data = ppo_data(logit_new, logit_old, action, value_new, value_old, adv, return_, None)
loss, info = ppo_error(data)
assert all([l.shape == tuple() for l in loss])
assert all([np.isscalar(i) for i in info])
assert logit_new.grad is None
assert value_new.grad is None
total_loss = sum(loss)
total_loss.backward()
assert isinstance(logit_new.grad, torch.Tensor)
assert isinstance(value_new.grad, torch.Tensor)
@pytest.mark.unittest
@pytest.mark.parametrize('use_value_clip, dual_clip, weight', args)
def test_ppo_error_continous(use_value_clip, dual_clip, weight):
B, N = 4, 6
mu_sigma_new = {'mu': torch.rand(B, N).requires_grad_(True), 'sigma': torch.rand(B, N).requires_grad_(True)}
mu_sigma_old = {
'mu': mu_sigma_new['mu'] + torch.rand_like(mu_sigma_new['mu']) * 0.1,
'sigma': mu_sigma_new['sigma'] + torch.rand_like(mu_sigma_new['sigma']) * 0.1
}
action = torch.rand(B, N)
value_new = torch.randn(B).requires_grad_(True)
value_old = value_new + torch.rand_like(value_new) * 0.1
adv = torch.rand(B)
return_ = torch.randn(B) * 2
data = ppo_data(mu_sigma_new, mu_sigma_old, action, value_new, value_old, adv, return_, weight)
loss, info = ppo_error_continuous(data, use_value_clip=use_value_clip, dual_clip=dual_clip)
assert all([l.shape == tuple() for l in loss])
assert all([np.isscalar(i) for i in info])
assert mu_sigma_new['mu'].grad is None
assert value_new.grad is None
total_loss = sum(loss)
total_loss.backward()
assert isinstance(mu_sigma_new['mu'].grad, torch.Tensor)
assert isinstance(value_new.grad, torch.Tensor)
|