File size: 21,862 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
from typing import Union, List, Dict
from collections import namedtuple
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import list_split, MODEL_REGISTRY, squeeze, SequenceType


def extract(a, t, x_shape):
    """
    Overview:
        extract output from a through index t.
    Arguments:
        - a (:obj:`torch.Tensor`): input tensor
        - t (:obj:`torch.Tensor`): index tensor
        - x_shape (:obj:`torch.Tensor`): shape of x
    """
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1, ) * (len(x_shape) - 1)))


def cosine_beta_schedule(timesteps: int, s: float = 0.008, dtype=torch.float32):
    """
    Overview:
        cosine schedule
        as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    Arguments:
        - timesteps (:obj:`int`): timesteps of diffusion step
        - s (:obj:`float`): s
        - dtype (:obj:`torch.dtype`): dtype of beta
    Return:
        Tensor of beta [timesteps,], computing by cosine.
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    betas_clipped = np.clip(betas, a_min=0, a_max=0.999)
    return torch.tensor(betas_clipped, dtype=dtype)


def apply_conditioning(x, conditions, action_dim):
    """
    Overview:
        add condition into x
    Arguments:
        - x (:obj:`torch.Tensor`): input tensor
        - conditions (:obj:`dict`): condition dict, key is timestep, value is condition
        - action_dim (:obj:`int`): action dim
    """
    for t, val in conditions.items():
        x[:, t, action_dim:] = val.clone()
    return x


class DiffusionConv1d(nn.Module):
    """
    Overview:
        Conv1d with activation and normalization for diffusion models.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: int,
            padding: int,
            activation: nn.Module = None,
            n_groups: int = 8
    ) -> None:
        """
        Overview:
            Create a 1-dim convlution layer with activation and normalization. This Conv1d have GropuNorm.
            And need add 1-dim when compute norm
        Arguments:
            - in_channels (:obj:`int`): Number of channels in the input tensor
            - out_channels (:obj:`int`): Number of channels in the output tensor
            - kernel_size (:obj:`int`): Size of the convolving kernel
            - padding (:obj:`int`): Zero-padding added to both sides of the input
            - activation (:obj:`nn.Module`): the optional activation function
        """
        super().__init__()
        self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
        self.norm = nn.GroupNorm(n_groups, out_channels)
        self.act = activation

    def forward(self, inputs) -> torch.Tensor:
        """
        Overview:
            compute conv1d for inputs.
        Arguments:
            - inputs (:obj:`torch.Tensor`): input tensor
        Return:
            - out (:obj:`torch.Tensor`): output tensor
        """
        x = self.conv1(inputs)
        # [batch, channels, horizon] -> [batch, channels, 1, horizon]
        x = x.unsqueeze(-2)
        x = self.norm(x)
        # [batch, channels, 1, horizon] -> [batch, channels, horizon]
        x = x.squeeze(-2)
        out = self.act(x)
        return out


class SinusoidalPosEmb(nn.Module):
    """
    Overview:
        class for computing sin position embeding
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, dim: int) -> None:
        """
        Overview:
            Initialization of SinusoidalPosEmb class
        Arguments:
            - dim (:obj:`int`): dimension of embeding
        """

        super().__init__()
        self.dim = dim

    def forward(self, x) -> torch.Tensor:
        """
        Overview:
            compute sin position embeding
        Arguments:
            - x (:obj:`torch.Tensor`): input tensor
        Return:
            - emb (:obj:`torch.Tensor`): output tensor
        """

        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=1)
        return emb


class Residual(nn.Module):
    """
    Overview:
        Basic Residual block
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, fn):
        """
        Overview:
            Initialization of Residual class
        Arguments:
            - fn (:obj:`nn.Module`): function of residual block
        """

        super().__init__()
        self.fn = fn

    def forward(self, x, *arg, **kwargs):
        """
        Overview:
            compute residual block
        Arguments:
            - x (:obj:`torch.Tensor`): input tensor
        """

        return self.fn(x, *arg, **kwargs) + x


class LayerNorm(nn.Module):
    """
    Overview:
        LayerNorm, compute dim = 1, because Temporal input x [batch, dim, horizon]
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, dim, eps=1e-5) -> None:
        """
        Overview:
            Initialization of LayerNorm class
        Arguments:
            - dim (:obj:`int`): dimension of input
            - eps (:obj:`float`): eps of LayerNorm
        """

        super().__init__()
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1, dim, 1))
        self.b = nn.Parameter(torch.zeros(1, dim, 1))

    def forward(self, x):
        """
        Overview:
            compute LayerNorm
        Arguments:
            - x (:obj:`torch.Tensor`): input tensor
        """

        print('x.shape:', x.shape)
        var = torch.var(x, dim=1, unbiased=False, keepdim=True)
        mean = torch.mean(x, dim=1, keepdim=True)
        return (x - mean) / (var + self.eps).sqrt() * self.g + self.b


class PreNorm(nn.Module):
    """
    Overview:
        PreNorm, compute dim = 1, because Temporal input x [batch, dim, horizon]
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, dim, fn) -> None:
        """
        Overview:
            Initialization of PreNorm class
        Arguments:
            - dim (:obj:`int`): dimension of input
            - fn (:obj:`nn.Module`): function of residual block
        """

        super().__init__()
        self.fn = fn
        self.norm = LayerNorm(dim)

    def forward(self, x):
        """
        Overview:
            compute PreNorm
        Arguments:
            - x (:obj:`torch.Tensor`): input tensor
        """
        x = self.norm(x)
        return self.fn(x)


class LinearAttention(nn.Module):
    """
    Overview:
        Linear Attention head
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, dim, heads=4, dim_head=32) -> None:
        """
        Overview:
            Initialization of LinearAttention class
        Arguments:
            - dim (:obj:`int`): dimension of input
            - heads (:obj:`int`): heads of attention
            - dim_head (:obj:`int`): dim of head
        """
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv1d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv1d(hidden_dim, dim, 1)

    def forward(self, x):
        """
        Overview:
            compute LinearAttention
        Arguments:
            - x (:obj:`torch.Tensor`): input tensor
        """
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(lambda t: t.reshape(t.shape[0], self.heads, -1, t.shape[-1]), qkv)
        q = q * self.scale
        k = k.softmax(dim=-1)
        context = torch.einsum('b h d n, b h e n -> b h d e', k, v)

        out = torch.einsum('b h d e, b h d n -> b h e n', context, q)
        out = out.reshape(out.shape[0], -1, out.shape[-1])
        return self.to_out(out)


class ResidualTemporalBlock(nn.Module):
    """
    Overview:
        Residual block of temporal
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
            self, in_channels: int, out_channels: int, embed_dim: int, kernel_size: int = 5, mish: bool = True
    ) -> None:
        """
        Overview:
            Initialization of ResidualTemporalBlock class
        Arguments:
            - in_channels (:obj:'int'): dim of in_channels
            - out_channels (:obj:'int'): dim of out_channels
            - embed_dim (:obj:'int'): dim of embeding layer
            - kernel_size (:obj:'int'): kernel_size of conv1d
            - mish (:obj:'bool'): whether use mish as a activate function
        """
        super().__init__()
        if mish:
            act = nn.Mish()
        else:
            act = nn.SiLU()
        self.blocks = nn.ModuleList(
            [
                DiffusionConv1d(in_channels, out_channels, kernel_size, kernel_size // 2, act),
                DiffusionConv1d(out_channels, out_channels, kernel_size, kernel_size // 2, act),
            ]
        )
        self.time_mlp = nn.Sequential(
            act,
            nn.Linear(embed_dim, out_channels),
        )
        self.residual_conv = nn.Conv1d(in_channels, out_channels, 1) \
            if in_channels != out_channels else nn.Identity()

    def forward(self, x, t):
        """
        Overview:
            compute residual block
        Arguments:
            - x (:obj:'tensor'): input tensor
            - t (:obj:'tensor'): time tensor
        """
        out = self.blocks[0](x) + self.time_mlp(t).unsqueeze(-1)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


class DiffusionUNet1d(nn.Module):
    """
    Overview:
        Diffusion unet for 1d vector data
    Interfaces:
        ``__init__``, ``forward``, ``get_pred``
    """

    def __init__(
            self,
            transition_dim: int,
            dim: int = 32,
            dim_mults: SequenceType = [1, 2, 4, 8],
            returns_condition: bool = False,
            condition_dropout: float = 0.1,
            calc_energy: bool = False,
            kernel_size: int = 5,
            attention: bool = False,
    ) -> None:
        """
        Overview:
            Initialization of DiffusionUNet1d class
        Arguments:
            - transition_dim (:obj:'int'): dim of transition, it is obs_dim + action_dim
            - dim (:obj:'int'): dim of layer
            - dim_mults (:obj:'SequenceType'): mults of dim
            - returns_condition (:obj:'bool'): whether use return as a condition
            - condition_dropout (:obj:'float'): dropout of returns condition
            - calc_energy (:obj:'bool'): whether use calc_energy
            - kernel_size (:obj:'int'): kernel_size of conv1d
            - attention (:obj:'bool'): whether use attention
        """
        super().__init__()
        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        if calc_energy:
            mish = False
            act = nn.SiLU()
        else:
            mish = True
            act = nn.Mish()

        self.time_dim = dim
        self.returns_dim = dim

        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            act,
            nn.Linear(dim * 4, dim),
        )

        self.returns_condition = returns_condition
        self.condition_dropout = condition_dropout
        self.cale_energy = calc_energy

        if self.returns_condition:
            self.returns_mlp = nn.Sequential(
                nn.Linear(1, dim),
                act,
                nn.Linear(dim, dim * 4),
                act,
                nn.Linear(dim * 4, dim),
            )
            self.mask_dist = torch.distributions.Bernoulli(probs=1 - self.condition_dropout)
            embed_dim = 2 * dim
        else:
            embed_dim = dim

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolution = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolution - 1)
            self.downs.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_in, dim_out, embed_dim, kernel_size, mish=mish),
                        ResidualTemporalBlock(dim_out, dim_out, embed_dim, kernel_size, mish=mish),
                        Residual(PreNorm(dim_out, LinearAttention(dim_out))) if attention else nn.Identity(),
                        nn.Conv1d(dim_out, dim_out, 3, 2, 1) if not is_last else nn.Identity()
                    ]
                )
            )

        mid_dim = dims[-1]
        self.mid_block1 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim, kernel_size, mish)
        self.mid_atten = Residual(PreNorm(mid_dim, LinearAttention(mid_dim))) if attention else nn.Identity()
        self.mid_block2 = ResidualTemporalBlock(mid_dim, mid_dim, embed_dim, kernel_size, mish)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            is_last = ind >= (num_resolution - 1)
            self.ups.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_out * 2, dim_in, embed_dim, kernel_size, mish=mish),
                        ResidualTemporalBlock(dim_in, dim_in, embed_dim, kernel_size, mish=mish),
                        Residual(PreNorm(dim_in, LinearAttention(dim_in))) if attention else nn.Identity(),
                        nn.ConvTranspose1d(dim_in, dim_in, 4, 2, 1) if not is_last else nn.Identity()
                    ]
                )
            )

        self.final_conv = nn.Sequential(
            DiffusionConv1d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, activation=act),
            nn.Conv1d(dim, transition_dim, 1),
        )

    def forward(self, x, cond, time, returns=None, use_dropout: bool = True, force_dropout: bool = False):
        """
        Overview:
            compute diffusion unet forward
        Arguments:
            - x (:obj:'tensor'): noise trajectory
            - cond (:obj:'tuple'): [ (time, state), ... ] state is init state of env, time = 0
            - time (:obj:'int'): timestep of diffusion step
            - returns (:obj:'tensor'): condition returns of trajectory, returns is normal return
            - use_dropout (:obj:'bool'): Whether use returns condition mask
            - force_dropout (:obj:'bool'): Whether use returns condition
        """
        if self.cale_energy:
            x_inp = x

        # [batch, horizon, transition ] -> [batch, transition , horizon]
        x = x.transpose(1, 2)
        t = self.time_mlp(time)

        if self.returns_condition:
            assert returns is not None
            returns_embed = self.returns_mlp(returns)
            if use_dropout:
                mask = self.mask_dist.sample(sample_shape=(returns_embed.size(0), 1)).to(returns_embed.device)
                returns_embed = mask * returns_embed
            if force_dropout:
                returns_embed = 0 * returns_embed
            t = torch.cat([t, returns_embed], dim=-1)

        h = []

        for resnet, resnet2, atten, downsample in self.downs:
            x = resnet(x, t)
            x = resnet2(x, t)
            x = atten(x)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_atten(x)
        x = self.mid_block2(x, t)

        for resnet, resnet2, atten, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = resnet(x, t)
            x = resnet2(x, t)
            x = atten(x)
            x = upsample(x)

        x = self.final_conv(x)
        # [batch, transition , horizon] -> [batch, horizon, transition ]
        x = x.transpose(1, 2)

        if self.cale_energy:
            # Energy function
            energy = ((x - x_inp) ** 2).mean()
            grad = torch.autograd.grad(outputs=energy, inputs=x_inp, create_graph=True)
            return grad[0]
        else:
            return x

    def get_pred(self, x, cond, time, returns: bool = None, use_dropout: bool = True, force_dropout: bool = False):
        """
        Overview:
            compute diffusion unet forward
        Arguments:
            - x (:obj:'tensor'): noise trajectory
            - cond (:obj:'tuple'): [ (time, state), ... ] state is init state of env, time = 0
            - time (:obj:'int'): timestep of diffusion step
            - returns (:obj:'tensor'): condition returns of trajectory, returns is normal return
            - use_dropout (:obj:'bool'): Whether use returns condition mask
            - force_dropout (:obj:'bool'): Whether use returns condition
        """
        # [batch, horizon, transition ] -> [batch, transition , horizon]
        x = x.transpose(1, 2)
        t = self.time_mlp(time)

        if self.returns_condition:
            assert returns is not None
            returns_embed = self.returns_mlp(returns)
            if use_dropout:
                mask = self.mask_dist.sample(sample_shape=(returns_embed.size(0), 1)).to(returns_embed.device)
                returns_embed = mask * returns_embed
            if force_dropout:
                returns_embed = 0 * returns_embed
            t = torch.cat([t, returns_embed], dim=-1)

        h = []

        for resnet, resnet2, downsample in self.downs:
            x = resnet(x, t)
            x = resnet2(x, t)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_block2(x, t)

        for resnet, resnet2, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = resnet(x, t)
            x = resnet2(x, t)
            x = upsample(x)

        x = self.final_conv(x)
        # [batch, transition , horizon] -> [batch, horizon, transition ]
        x = x.transpose(1, 2)
        return x


class TemporalValue(nn.Module):
    """
    Overview:
        temporal net for value function
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
            self,
            horizon: int,
            transition_dim: int,
            dim: int = 32,
            time_dim: int = None,
            out_dim: int = 1,
            kernel_size: int = 5,
            dim_mults: SequenceType = [1, 2, 4, 8],
    ) -> None:
        """
        Overview:
            Initialization of TemporalValue class
        Arguments:
            - horizon (:obj:'int'): horizon of trajectory
            - transition_dim (:obj:'int'): dim of transition, it is obs_dim + action_dim
            - dim (:obj:'int'): dim of layer
            - time_dim (:obj:'int'): dim of time
            - out_dim (:obj:'int'): dim of output
            - kernel_size (:obj:'int'): kernel_size of conv1d
            - dim_mults (:obj:'SequenceType'): mults of dim
        """
        super().__init__()
        dims = [transition_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        time_dim = time_dim or dim
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.Mish(),
            nn.Linear(dim * 4, dim),
        )
        self.blocks = nn.ModuleList([])

        for ind, (dim_in, dim_out) in enumerate(in_out):
            self.blocks.append(
                nn.ModuleList(
                    [
                        ResidualTemporalBlock(dim_in, dim_out, kernel_size=kernel_size, embed_dim=time_dim),
                        ResidualTemporalBlock(dim_out, dim_out, kernel_size=kernel_size, embed_dim=time_dim),
                        nn.Conv1d(dim_out, dim_out, 3, 2, 1)
                    ]
                )
            )

            horizon = horizon // 2

        mid_dim = dims[-1]
        mid_dim_2 = mid_dim // 2
        mid_dim_3 = mid_dim // 4

        self.mid_block1 = ResidualTemporalBlock(mid_dim, mid_dim_2, kernel_size=kernel_size, embed_dim=time_dim)
        self.mid_down1 = nn.Conv1d(mid_dim_2, mid_dim_2, 3, 2, 1)

        horizon = horizon // 2
        self.mid_block2 = ResidualTemporalBlock(mid_dim_2, mid_dim_3, kernel_size=kernel_size, embed_dim=time_dim)
        self.mid_down2 = nn.Conv1d(mid_dim_3, mid_dim_3, 3, 2, 1)
        horizon = horizon // 2

        fc_dim = mid_dim_3 * max(horizon, 1)
        self.final_block = nn.Sequential(
            nn.Linear(fc_dim + time_dim, fc_dim // 2),
            nn.Mish(),
            nn.Linear(fc_dim // 2, out_dim),
        )

    def forward(self, x, cond, time, *args):
        """
        Overview:
            compute temporal value forward
        Arguments:
            - x (:obj:'tensor'): noise trajectory
            - cond (:obj:'tuple'): [ (time, state), ... ] state is init state of env, time = 0
            - time (:obj:'int'): timestep of diffusion step
        """
        # [batch, horizon, transition ] -> [batch, transition , horizon]
        x = x.transpose(1, 2)
        t = self.time_mlp(time)
        for resnet, resnet2, downsample in self.blocks:
            x = resnet(x, t)
            x = resnet2(x, t)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_down1(x)

        x = self.mid_block2(x, t)
        x = self.mid_down2(x)
        x = x.view(len(x), -1)
        out = self.final_block(torch.cat([x, t], dim=-1))
        return out