File size: 11,438 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import List, Optional, Tuple
from .nn_module import fc_block, build_normalization
class Attention(nn.Module):
"""
Overview:
For each entry embedding, compute individual attention across all entries, add them up to get output attention.
Interfaces:
``__init__``, ``split``, ``forward``
"""
def __init__(self, input_dim: int, head_dim: int, output_dim: int, head_num: int, dropout: nn.Module) -> None:
"""
Overview:
Initialize the Attention module with the provided dimensions and dropout layer.
Arguments:
- input_dim (:obj:`int`): The dimension of the input.
- head_dim (:obj:`int`): The dimension of each head in the multi-head attention mechanism.
- output_dim (:obj:`int`): The dimension of the output.
- head_num (:obj:`int`): The number of heads in the multi-head attention mechanism.
- dropout (:obj:`nn.Module`): The dropout layer used in the attention mechanism.
"""
super(Attention, self).__init__()
self.head_num = head_num
self.head_dim = head_dim
self.dropout = dropout
self.attention_pre = fc_block(input_dim, head_dim * head_num * 3) # query, key, value
self.project = fc_block(head_dim * head_num, output_dim)
def split(self, x: torch.Tensor, T: bool = False) -> List[torch.Tensor]:
"""
Overview:
Split the input to get multi-head queries, keys, and values.
Arguments:
- x (:obj:`torch.Tensor`): The tensor to be split, which could be a query, key, or value.
- T (:obj:`bool`, optional): If True, transpose the output tensors. Defaults to False.
Returns:
- x (:obj:`List[torch.Tensor]`): A list of output tensors for each head.
"""
B, N = x.shape[:2]
x = x.view(B, N, self.head_num, self.head_dim)
x = x.permute(0, 2, 1, 3).contiguous() # B, head_num, N, head_dim
if T:
x = x.permute(0, 1, 3, 2).contiguous()
return x
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Overview:
Compute the attention from the input tensor.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor for the forward computation.
- mask (:obj:`Optional[torch.Tensor]`, optional): Optional mask to exclude invalid entries.
Defaults to None.
Returns:
- attention (:obj:`torch.Tensor`): The computed attention tensor.
"""
assert (len(x.shape) == 3)
B, N = x.shape[:2]
x = self.attention_pre(x)
query, key, value = torch.chunk(x, 3, dim=2)
query, key, value = self.split(query), self.split(key, T=True), self.split(value)
score = torch.matmul(query, key) # B, head_num, N, N
score /= math.sqrt(self.head_dim)
if mask is not None:
# inplace modification for reasonable softmax
score.masked_fill_(~mask, value=-1e9)
score = F.softmax(score, dim=-1)
score = self.dropout(score)
attention = torch.matmul(score, value) # B, head_num, N, head_dim
attention = attention.permute(0, 2, 1, 3).contiguous() # B, N, head_num, head_dim
attention = self.project(attention.view(B, N, -1)) # B, N, output_dim
return attention
class TransformerLayer(nn.Module):
"""
Overview:
In transformer layer, first computes entries's attention and applies a feedforward layer.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self, input_dim: int, head_dim: int, hidden_dim: int, output_dim: int, head_num: int, mlp_num: int,
dropout: nn.Module, activation: nn.Module
) -> None:
"""
Overview:
Initialize the TransformerLayer with the provided dimensions, dropout layer, and activation function.
Arguments:
- input_dim (:obj:`int`): The dimension of the input.
- head_dim (:obj:`int`): The dimension of each head in the multi-head attention mechanism.
- hidden_dim (:obj:`int`): The dimension of the hidden layer in the MLP (Multi-Layer Perceptron).
- output_dim (:obj:`int`): The dimension of the output.
- head_num (:obj:`int`): The number of heads in the multi-head attention mechanism.
- mlp_num (:obj:`int`): The number of layers in the MLP.
- dropout (:obj:`nn.Module`): The dropout layer used in the attention mechanism.
- activation (:obj:`nn.Module`): The activation function used in the MLP.
"""
super(TransformerLayer, self).__init__()
self.attention = Attention(input_dim, head_dim, output_dim, head_num, dropout)
self.layernorm1 = build_normalization('LN')(output_dim)
self.dropout = dropout
layers = []
dims = [output_dim] + [hidden_dim] * (mlp_num - 1) + [output_dim]
for i in range(mlp_num):
layers.append(fc_block(dims[i], dims[i + 1], activation=activation))
if i != mlp_num - 1:
layers.append(self.dropout)
layers.append(self.dropout)
self.mlp = nn.Sequential(*layers)
self.layernorm2 = build_normalization('LN')(output_dim)
def forward(self, inputs: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Compute the forward pass through the Transformer layer.
Arguments:
- inputs (:obj:`Tuple[torch.Tensor, torch.Tensor]`): A tuple containing the input tensor `x` and
the mask tensor.
Returns:
- output (:obj:`Tuple[torch.Tensor, torch.Tensor]`): A tuple containing the predicted value tensor and
the mask tensor.
"""
x, mask = inputs
a = self.dropout(self.attention(x, mask))
x = self.layernorm1(x + a)
m = self.dropout(self.mlp(x))
x = self.layernorm2(x + m)
return x, mask
class Transformer(nn.Module):
"""
Overview:
Implementation of the Transformer model.
.. note::
For more details, refer to "Attention is All You Need": http://arxiv.org/abs/1706.03762.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
input_dim: int,
head_dim: int = 128,
hidden_dim: int = 1024,
output_dim: int = 256,
head_num: int = 2,
mlp_num: int = 2,
layer_num: int = 3,
dropout_ratio: float = 0.,
activation: nn.Module = nn.ReLU(),
):
"""
Overview:
Initialize the Transformer with the provided dimensions, dropout layer, activation function,
and layer numbers.
Arguments:
- input_dim (:obj:`int`): The dimension of the input.
- head_dim (:obj:`int`): The dimension of each head in the multi-head attention mechanism.
- hidden_dim (:obj:`int`): The dimension of the hidden layer in the MLP (Multi-Layer Perceptron).
- output_dim (:obj:`int`): The dimension of the output.
- head_num (:obj:`int`): The number of heads in the multi-head attention mechanism.
- mlp_num (:obj:`int`): The number of layers in the MLP.
- layer_num (:obj:`int`): The number of Transformer layers.
- dropout_ratio (:obj:`float`): The dropout ratio for the dropout layer.
- activation (:obj:`nn.Module`): The activation function used in the MLP.
"""
super(Transformer, self).__init__()
self.embedding = fc_block(input_dim, output_dim, activation=activation)
self.act = activation
layers = []
dims = [output_dim] + [output_dim] * layer_num
self.dropout = nn.Dropout(dropout_ratio)
for i in range(layer_num):
layers.append(
TransformerLayer(dims[i], head_dim, hidden_dim, dims[i + 1], head_num, mlp_num, self.dropout, self.act)
)
self.main = nn.Sequential(*layers)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Overview:
Perform the forward pass through the Transformer.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor, with shape `(B, N, C)`, where `B` is batch size, \
`N` is the number of entries, and `C` is the feature dimension.
- mask (:obj:`Optional[torch.Tensor]`, optional): The mask tensor (bool), used to mask out invalid \
entries in attention. It has shape `(B, N)`, where `B` is batch size and `N` is number of \
entries. Defaults to None.
Returns:
- x (:obj:`torch.Tensor`): The output tensor from the Transformer.
"""
if mask is not None:
mask = mask.unsqueeze(dim=1).repeat(1, mask.shape[1], 1).unsqueeze(dim=1)
x = self.embedding(x)
x = self.dropout(x)
x, mask = self.main((x, mask))
return x
class ScaledDotProductAttention(nn.Module):
"""
Overview:
Implementation of Scaled Dot Product Attention, a key component of Transformer models.
This class performs the dot product of the query, key and value tensors, scales it with the square root of the
dimension of the key vector (d_k) and applies dropout for regularization.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, d_k: int, dropout: float = 0.0) -> None:
"""
Overview:
Initialize the ScaledDotProductAttention module with the dimension of the key vector and the dropout rate.
Arguments:
- d_k (:obj:`int`): The dimension of the key vector. This will be used to scale the dot product of the \
query and key.
- dropout (:obj:`float`, optional): The dropout rate to be applied after the softmax operation. \
Defaults to 0.0.
"""
super(ScaledDotProductAttention, self).__init__()
self.d_k = d_k
self.dropout = nn.Dropout(dropout)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Overview:
Perform the Scaled Dot Product Attention operation on the query, key and value tensors.
Arguments:
- q (:obj:`torch.Tensor`): The query tensor.
- k (:obj:`torch.Tensor`): The key tensor.
- v (:obj:`torch.Tensor`): The value tensor.
- mask (:obj:`Optional[torch.Tensor]`): An optional mask tensor to be applied on the attention scores.
Defaults to None.
Returns:
- output (:obj:`torch.Tensor`): The output tensor after the attention operation.
"""
attn = torch.matmul(q / (self.d_k ** 0.5), k.transpose(2, 3))
if mask is not None:
# inplace modification for reasonable softmax
attn.masked_fill_(~mask, -1e9)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output
|