File size: 5,457 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import time

import pytest
import torch
import torch.nn as nn
import uuid

from ding.torch_utils.checkpoint_helper import auto_checkpoint, build_checkpoint_helper, CountVar
from ding.utils import read_file, save_file


class DstModel(nn.Module):

    def __init__(self):
        super(DstModel, self).__init__()
        self.fc1 = nn.Linear(3, 3)
        self.fc2 = nn.Linear(3, 8)
        self.fc_dst = nn.Linear(3, 6)


class SrcModel(nn.Module):

    def __init__(self):
        super(SrcModel, self).__init__()
        self.fc1 = nn.Linear(3, 3)
        self.fc2 = nn.Linear(3, 8)
        self.fc_src = nn.Linear(3, 7)


class HasStateDict(object):

    def __init__(self, name):
        self._name = name
        self._state_dict = name + str(uuid.uuid4())

    def state_dict(self):
        old = self._state_dict
        self._state_dict = self._name + str(uuid.uuid4())
        return old

    def load_state_dict(self, state_dict):
        self._state_dict = state_dict


@pytest.mark.unittest
class TestCkptHelper:

    def test_load_model(self):
        path = 'model.pt'
        os.popen('rm -rf ' + path)
        time.sleep(1)

        dst_model = DstModel()
        src_model = SrcModel()
        ckpt_state_dict = {'model': src_model.state_dict()}
        torch.save(ckpt_state_dict, path)

        ckpt_helper = build_checkpoint_helper({})
        with pytest.raises(RuntimeError):
            ckpt_helper.load(path, dst_model, strict=True)

        ckpt_helper.load(path, dst_model, strict=False)
        assert torch.abs(dst_model.fc1.weight - src_model.fc1.weight).max() < 1e-6
        assert torch.abs(dst_model.fc1.bias - src_model.fc1.bias).max() < 1e-6

        dst_model = DstModel()
        src_model = SrcModel()
        assert torch.abs(dst_model.fc1.weight - src_model.fc1.weight).max() > 1e-6
        src_optimizer = HasStateDict('src_optimizer')
        dst_optimizer = HasStateDict('dst_optimizer')
        src_last_epoch = CountVar(11)
        dst_last_epoch = CountVar(5)
        src_last_iter = CountVar(110)
        dst_last_iter = CountVar(50)
        src_dataset = HasStateDict('src_dataset')
        dst_dataset = HasStateDict('dst_dataset')
        src_collector_info = HasStateDict('src_collect_info')
        dst_collector_info = HasStateDict('dst_collect_info')
        ckpt_helper.save(
            path,
            src_model,
            optimizer=src_optimizer,
            dataset=src_dataset,
            collector_info=src_collector_info,
            last_iter=src_last_iter,
            last_epoch=src_last_epoch,
            prefix_op='remove',
            prefix="f"
        )
        ckpt_helper.load(
            path,
            dst_model,
            dataset=dst_dataset,
            optimizer=dst_optimizer,
            last_iter=dst_last_iter,
            last_epoch=dst_last_epoch,
            collector_info=dst_collector_info,
            strict=False,
            state_dict_mask=['fc1'],
            prefix_op='add',
            prefix="f"
        )
        assert dst_dataset.state_dict().startswith('src')
        assert dst_optimizer.state_dict().startswith('src')
        assert dst_collector_info.state_dict().startswith('src')
        assert dst_last_iter.val == 110
        for k, v in dst_model.named_parameters():
            assert k.startswith('fc')
        print('==dst', dst_model.fc2.weight)
        print('==src', src_model.fc2.weight)
        assert torch.abs(dst_model.fc2.weight - src_model.fc2.weight).max() < 1e-6
        assert torch.abs(dst_model.fc1.weight - src_model.fc1.weight).max() > 1e-6

        checkpoint = read_file(path)
        checkpoint.pop('dataset')
        checkpoint.pop('optimizer')
        checkpoint.pop('last_iter')
        save_file(path, checkpoint)
        ckpt_helper.load(
            path,
            dst_model,
            dataset=dst_dataset,
            optimizer=dst_optimizer,
            last_iter=dst_last_iter,
            last_epoch=dst_last_epoch,
            collector_info=dst_collector_info,
            strict=True,
            state_dict_mask=['fc1'],
            prefix_op='add',
            prefix="f"
        )
        with pytest.raises(NotImplementedError):
            ckpt_helper.load(
                path,
                dst_model,
                strict=False,
                lr_schduler='lr_scheduler',
                last_iter=dst_last_iter,
            )

        with pytest.raises(KeyError):
            ckpt_helper.save(path, src_model, prefix_op='key_error', prefix="f")
            ckpt_helper.load(path, dst_model, strict=False, prefix_op='key_error', prefix="f")

        os.popen('rm -rf ' + path + '*')


@pytest.mark.unittest
def test_count_var():
    var = CountVar(0)
    var.add(5)
    assert var.val == 5
    var.update(3)
    assert var.val == 3


@pytest.mark.unittest
def test_auto_checkpoint():

    class AutoCkptCls:

        def __init__(self):
            pass

        @auto_checkpoint
        def start(self):
            for i in range(10):
                if i < 5:
                    time.sleep(0.2)
                else:
                    raise Exception("There is an exception")
                    break

        def save_checkpoint(self, ckpt_path):
            print('Checkpoint is saved successfully in {}!'.format(ckpt_path))

    auto_ckpt = AutoCkptCls()
    auto_ckpt.start()


if __name__ == '__main__':
    test = TestCkptHelper()
    test.test_load_model()