File size: 6,316 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from functools import lru_cache
from typing import Callable, Tuple, List, Any
import numpy as np
import torch
from .default_helper import error_wrapper
from .fake_linklink import FakeLink
from .import_helper import try_import_link
@lru_cache()
def get_link():
return try_import_link()
@lru_cache()
def is_fake_link():
return isinstance(get_link(), FakeLink)
def get_rank() -> int:
"""
Overview:
Get the rank of ``linklink`` model, return 0 if use ``FakeLink``.
.. note::
Reference ``import_helper.try_import_link`` and ``linklink.get_rank``.
"""
if is_fake_link():
return 0
return error_wrapper(get_link().get_rank, 0, "[WARNING]: call linklink error, return default_ret.")()
def get_world_size() -> int:
"""
Overview:
Get the ``world_size`` of ``linklink model``, return 0 if use ``FakeLink``.
.. note::
Reference ``import_helper.try_import_link`` and ``linklink.get_world_size``.
"""
if is_fake_link():
return 1
return error_wrapper(get_link().get_world_size, 1, "[WARNING]: call linklink error, return default_ret.")()
def broadcast(value: torch.Tensor, rank: int) -> None:
"""
Overview:
Use ``linklink.broadcast`` and raise error when using ``FakeLink``
Arguments:
- value (:obj:`obj`): the value to board cast
- rank (:obj:`int`): the rank to broadcast on
"""
if is_fake_link():
raise NotImplementedError
get_link().broadcast(value, rank)
def allreduce(data: torch.Tensor, op: str = 'sum') -> None:
"""
Overview:
Call ``linklink.allreduce`` on the data
Arguments:
- data (:obj:`obj`): the data to reduce
- op (:obj:`str`): the operation to perform on data, support ``['sum', 'max']``
"""
link_op_map = {'sum': get_link().allreduceOp_t.Sum, 'max': get_link().allreduceOp_t.Max}
if op not in link_op_map.keys():
raise KeyError("not support allreduce op type: {}".format(op))
else:
link_op = link_op_map[op]
if is_fake_link():
return data
get_link().allreduce(data, reduce_op=link_op)
if op == 'sum':
data.div_(get_world_size())
def allreduce_async(data: torch.Tensor, op: str = 'sum') -> None:
"""
Overview:
Call ``linklink.allreduce_async`` on the data
Arguments:
- data (:obj:`obj`): the data to reduce
- op (:obj:`str`): the operation to perform on data, support ``['sum', 'max']``
"""
link_op_map = {'sum': get_link().allreduceOp_t.Sum, 'max': get_link().allreduceOp_t.Max}
if op not in link_op_map.keys():
raise KeyError("not support allreduce op type: {}".format(op))
else:
link_op = link_op_map[op]
if is_fake_link():
return data
if op == 'sum':
data.div_(get_world_size())
get_link().allreduce_async(data, reduce_op=link_op)
def get_group(group_size: int) -> List:
"""
Overview:
Get the group segmentation of ``group_size`` each group
Arguments:
- group_size (:obj:`int`) the ``group_size``
"""
rank = get_rank()
world_size = get_world_size()
if group_size is None:
group_size = world_size
assert (world_size % group_size == 0)
return simple_group_split(world_size, rank, world_size // group_size)
def dist_mode(func: Callable) -> Callable:
"""
Overview:
Wrap the function so that in can init and finalize automatically before each call
Arguments:
- func (:obj:`Callable`): the function to wrap
"""
def wrapper(*args, **kwargs):
dist_init()
func(*args, **kwargs)
dist_finalize()
return wrapper
def dist_init(method: str = 'slurm', device_id: int = 0) -> Tuple[int, int]:
"""
Overview:
Init the distribution
Arguments:
- method (:obj:`str`): Support ``['slurm', 'single_node`]``
- device_id (:obj:`int`): Default device when using ``single_node`` method
"""
get_link().initialize()
world_size = get_link().get_world_size()
rank = get_link().get_rank()
if method == 'slurm':
# proc_id = int(os.environ['SLURM_PROCID'])
# ntasks = int(os.environ['SLURM_NTASKS'])
# node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
elif method == 'single_node':
torch.cuda.set_device(device_id)
return rank, world_size
def dist_finalize() -> None:
"""
Overview:
Finalize ``linklink``, see ``linklink.finalize()``
"""
get_link().finalize()
class DistContext:
"""
Overview:
A context manager for ``linklink`` distribution
Interfaces:
``__init__``, ``__enter__``, ``__exit__``
"""
def __init__(self) -> None:
"""
Overview:
Initialize the ``DistContext``
"""
pass
def __enter__(self) -> None:
"""
Overview:
Initialize ``linklink`` distribution
"""
dist_init()
def __exit__(self, *args, **kwargs) -> Any:
"""
Overview:
Finalize ``linklink`` distribution
Arugments:
- args (:obj:`Tuple`): The arguments passed to the ``__exit__`` function.
- kwargs (:obj:`Dict`): The keyword arguments passed to the ``__exit__`` function.
"""
dist_finalize()
def simple_group_split(world_size: int, rank: int, num_groups: int) -> List:
"""
Overview:
Split the group according to ``worldsize``, ``rank`` and ``num_groups``
Arguments:
- world_size (:obj:`int`): The world size
- rank (:obj:`int`): The rank
- num_groups (:obj:`int`): The number of groups
.. note::
With faulty input, raise ``array split does not result in an equal division``
"""
groups = []
rank_list = np.split(np.arange(world_size), num_groups)
rank_list = [list(map(int, x)) for x in rank_list]
for i in range(num_groups):
groups.append(get_link().new_group(rank_list[i]))
group_size = world_size // num_groups
return groups[rank // group_size]
def synchronize():
"""
Overview:
Synchronize the process
"""
get_link().synchronize()
|