File size: 15,280 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import numpy as np
class DatasetNormalizer:
"""
Overview:
The `DatasetNormalizer` class provides functionality to normalize and unnormalize data in a dataset.
It takes a dataset as input and applies a normalizer function to each key in the dataset.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, dataset: np.ndarray, normalizer: str, path_lengths: list = None):
"""
Overview:
Initialize the NormalizerHelper object.
Arguments:
- dataset (:obj:`np.ndarray`): The dataset to be normalized.
- normalizer (:obj:`str`): The type of normalizer to be used. Can be a string representing the name of \
the normalizer class.
- path_lengths (:obj:`list`): The length of the paths in the dataset. Defaults to None.
"""
dataset = flatten(dataset, path_lengths)
self.observation_dim = dataset['observations'].shape[1]
self.action_dim = dataset['actions'].shape[1]
if isinstance(normalizer, str):
normalizer = eval(normalizer)
self.normalizers = {}
for key, val in dataset.items():
try:
self.normalizers[key] = normalizer(val)
except:
print(f'[ utils/normalization ] Skipping {key} | {normalizer}')
# key: normalizer(val)
# for key, val in dataset.items()
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the NormalizerHelper object. \
The string representation includes the key-value pairs of the normalizers \
stored in the NormalizerHelper object.
Returns:
- ret (:obj:`str`):A string representation of the NormalizerHelper object.
"""
string = ''
for key, normalizer in self.normalizers.items():
string += f'{key}: {normalizer}]\n'
return string
def normalize(self, x: np.ndarray, key: str) -> np.ndarray:
"""
Overview:
Normalize the input data using the specified key.
Arguments:
- x (:obj:`np.ndarray`): The input data to be normalized.
- key (:obj`str`): The key to identify the normalizer.
Returns:
- ret (:obj:`np.ndarray`): The normalized value of the input data.
"""
return self.normalizers[key].normalize(x)
def unnormalize(self, x: np.ndarray, key: str) -> np.ndarray:
"""
Overview:
Unnormalizes the given value `x` using the specified `key`.
Arguments:
- x (:obj:`np.ndarray`): The value to be unnormalized.
- key (:obj`str`): The key to identify the normalizer.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized value.
"""
return self.normalizers[key].unnormalize(x)
def flatten(dataset: dict, path_lengths: list) -> dict:
"""
Overview:
Flattens dataset of { key: [ n_episodes x max_path_length x dim ] } \
to { key : [ (n_episodes * sum(path_lengths)) x dim ] }
Arguments:
- dataset (:obj:`dict`): The dataset to be flattened.
- path_lengths (:obj:`list`): A list of path lengths for each episode.
Returns:
- flattened (:obj:`dict`): The flattened dataset.
"""
flattened = {}
for key, xs in dataset.items():
assert len(xs) == len(path_lengths)
if key == 'path_lengths':
continue
flattened[key] = np.concatenate([x[:length] for x, length in zip(xs, path_lengths)], axis=0)
return flattened
class Normalizer:
"""
Overview:
Parent class, subclass by defining the `normalize` and `unnormalize` methods
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X):
"""
Overview:
Initialize the Normalizer object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
self.X = X.astype(np.float32)
self.mins = X.min(axis=0)
self.maxs = X.max(axis=0)
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the Normalizer object.
Returns:
- ret (:obj:`str`): A string representation of the Normalizer object.
"""
return (
f"""[ Normalizer ] dim: {self.mins.size}\n -: """
f"""{np.round(self.mins, 2)}\n +: {np.round(self.maxs, 2)}\n"""
)
def normalize(self, *args, **kwargs):
"""
Overview:
Normalize the input data.
Arguments:
- args (:obj:`list`): The arguments passed to the ``normalize`` function.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``normalize`` function.
"""
raise NotImplementedError()
def unnormalize(self, *args, **kwargs):
"""
Overview:
Unnormalize the input data.
Arguments:
- args (:obj:`list`): The arguments passed to the ``unnormalize`` function.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``unnormalize`` function.
"""
raise NotImplementedError()
class GaussianNormalizer(Normalizer):
"""
Overview:
A class that normalizes data to zero mean and unit variance.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, *args, **kwargs):
"""
Overview:
Initialize the GaussianNormalizer object.
Arguments:
- args (:obj:`list`): The arguments passed to the ``__init__`` function of the parent class, \
i.e., the Normalizer class.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``__init__`` function of the parent class, \
i.e., the Normalizer class.
"""
super().__init__(*args, **kwargs)
self.means = self.X.mean(axis=0)
self.stds = self.X.std(axis=0)
self.z = 1
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the GaussianNormalizer object.
Returns:
- ret (:obj:`str`): A string representation of the GaussianNormalizer object.
"""
return (
f"""[ Normalizer ] dim: {self.mins.size}\n """
f"""means: {np.round(self.means, 2)}\n """
f"""stds: {np.round(self.z * self.stds, 2)}\n"""
)
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
return (x - self.means) / self.stds
def unnormalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Unnormalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data to be unnormalized.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized data.
"""
return x * self.stds + self.means
class CDFNormalizer(Normalizer):
"""
Overview:
A class that makes training data uniform (over each dimension) by transforming it with marginal CDFs.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X):
"""
Overview:
Initialize the CDFNormalizer object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
super().__init__(atleast_2d(X))
self.dim = self.X.shape[1]
self.cdfs = [CDFNormalizer1d(self.X[:, i]) for i in range(self.dim)]
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the CDFNormalizer object.
Returns:
- ret (:obj:`str`): A string representation of the CDFNormalizer object.
"""
return f'[ CDFNormalizer ] dim: {self.mins.size}\n' + ' | '.join(
f'{i:3d}: {cdf}' for i, cdf in enumerate(self.cdfs)
)
def wrap(self, fn_name: str, x: np.ndarray) -> np.ndarray:
"""
Overview:
Wraps the given function name and applies it to the input data.
Arguments:
- fn_name (:obj:`str`): The name of the function to be applied.
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret: The output of the function applied to the input data.
"""
shape = x.shape
# reshape to 2d
x = x.reshape(-1, self.dim)
out = np.zeros_like(x)
for i, cdf in enumerate(self.cdfs):
fn = getattr(cdf, fn_name)
out[:, i] = fn(x[:, i])
return out.reshape(shape)
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalizes the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
return self.wrap('normalize', x)
def unnormalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Unnormalizes the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret (:obj:`np.ndarray`):: The unnormalized data.
"""
return self.wrap('unnormalize', x)
class CDFNormalizer1d:
"""
Overview:
CDF normalizer for a single dimension. This class provides methods to normalize and unnormalize data \
using the Cumulative Distribution Function (CDF) approach.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X: np.ndarray):
"""
Overview:
Initialize the CDFNormalizer1d object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
import scipy.interpolate as interpolate
assert X.ndim == 1
self.X = X.astype(np.float32)
if self.X.max() == self.X.min():
self.constant = True
else:
self.constant = False
quantiles, cumprob = empirical_cdf(self.X)
self.fn = interpolate.interp1d(quantiles, cumprob)
self.inv = interpolate.interp1d(cumprob, quantiles)
self.xmin, self.xmax = quantiles.min(), quantiles.max()
self.ymin, self.ymax = cumprob.min(), cumprob.max()
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the CDFNormalizer1d object.
"""
return (f'[{np.round(self.xmin, 2):.4f}, {np.round(self.xmax, 2):.4f}')
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The data to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
if self.constant:
return x
x = np.clip(x, self.xmin, self.xmax)
# [ 0, 1 ]
y = self.fn(x)
# [ -1, 1 ]
y = 2 * y - 1
return y
def unnormalize(self, x: np.ndarray, eps: float = 1e-4) -> np.ndarray:
"""
Overview:
Unnormalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The data to be unnormalized.
- eps (:obj:`float`): A small value used for numerical stability. Defaults to 1e-4.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized data.
"""
# [ -1, 1 ] --> [ 0, 1 ]
if self.constant:
return x
x = (x + 1) / 2.
if (x < self.ymin - eps).any() or (x > self.ymax + eps).any():
print(
f"""[ dataset/normalization ] Warning: out of range in unnormalize: """
f"""[{x.min()}, {x.max()}] | """
f"""x : [{self.xmin}, {self.xmax}] | """
f"""y: [{self.ymin}, {self.ymax}]"""
)
x = np.clip(x, self.ymin, self.ymax)
y = self.inv(x)
return y
def empirical_cdf(sample: np.ndarray) -> (np.ndarray, np.ndarray):
"""
Overview:
Compute the empirical cumulative distribution function (CDF) of a given sample.
Arguments:
- sample (:obj:`np.ndarray`): The input sample for which to compute the empirical CDF.
Returns:
- quantiles (:obj:`np.ndarray`): The unique values in the sample.
- cumprob (:obj:`np.ndarray`): The cumulative probabilities corresponding to the quantiles.
References:
- Stack Overflow: https://stackoverflow.com/a/33346366
"""
# find the unique values and their corresponding counts
quantiles, counts = np.unique(sample, return_counts=True)
# take the cumulative sum of the counts and divide by the sample size to
# get the cumulative probabilities between 0 and 1
cumprob = np.cumsum(counts).astype(np.double) / sample.size
return quantiles, cumprob
def atleast_2d(x: np.ndarray) -> np.ndarray:
"""
Overview:
Ensure that the input array has at least two dimensions.
Arguments:
- x (:obj:`np.ndarray`): The input array.
Returns:
- ret (:obj:`np.ndarray`): The input array with at least two dimensions.
"""
if x.ndim < 2:
x = x[:, None]
return x
class LimitsNormalizer(Normalizer):
"""
Overview:
A class that normalizes and unnormalizes values within specified limits. \
This class maps values within the range [xmin, xmax] to the range [-1, 1].
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalizes the input values.
Argments:
- x (:obj:`np.ndarray`): The input values to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized values.
"""
# [ 0, 1 ]
x = (x - self.mins) / (self.maxs - self.mins)
# [ -1, 1 ]
x = 2 * x - 1
return x
def unnormalize(self, x: np.ndarray, eps: float = 1e-4) -> np.ndarray:
"""
Overview:
Unnormalizes the input values.
Arguments:
- x (:obj:`np.ndarray`): The input values to be unnormalized.
- eps (:obj:`float`): A small value used for clipping. Defaults to 1e-4.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized values.
"""
if x.max() > 1 + eps or x.min() < -1 - eps:
# print(f'[ datasets/mujoco ] Warning: sample out of range | ({x.min():.4f}, {x.max():.4f})')
x = np.clip(x, -1, 1)
# [ -1, 1 ] --> [ 0, 1 ]
x = (x + 1) / 2.
return x * (self.maxs - self.mins) + self.mins
|