File size: 9,492 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
from collections import namedtuple
import numpy as np
import pytest
import torch
import treetensor.torch as ttorch
from ding.utils.default_helper import lists_to_dicts, dicts_to_lists, squeeze, default_get, override, error_wrapper, \
list_split, LimitedSpaceContainer, set_pkg_seed, deep_merge_dicts, deep_update, flatten_dict, RunningMeanStd, \
one_time_warning, split_data_generator, get_shape0
@pytest.mark.unittest
class TestDefaultHelper():
def test_get_shape0(self):
a = {
'a': {
'b': torch.randn(4, 3)
},
'c': {
'd': torch.randn(4)
},
}
b = [a, a]
c = (a, a)
d = {
'a': {
'b': ["a", "b", "c", "d"]
},
'c': {
'd': torch.randn(4)
},
}
a = ttorch.as_tensor(a)
assert get_shape0(a) == 4
assert get_shape0(b) == 4
assert get_shape0(c) == 4
with pytest.raises(Exception) as e_info:
assert get_shape0(d) == 4
def test_lists_to_dicts(self):
set_pkg_seed(12)
with pytest.raises(ValueError):
lists_to_dicts([])
with pytest.raises(TypeError):
lists_to_dicts([1])
assert lists_to_dicts([{1: 1, 10: 3}, {1: 2, 10: 4}]) == {1: [1, 2], 10: [3, 4]}
T = namedtuple('T', ['location', 'race'])
data = [T({'x': 1, 'y': 2}, 'zerg') for _ in range(3)]
output = lists_to_dicts(data)
assert isinstance(output, T) and output.__class__ == T
assert len(output.location) == 3
data = [{'value': torch.randn(1), 'obs': {'scalar': torch.randn(4)}} for _ in range(3)]
output = lists_to_dicts(data, recursive=True)
assert isinstance(output, dict)
assert len(output['value']) == 3
assert len(output['obs']['scalar']) == 3
def test_dicts_to_lists(self):
assert dicts_to_lists({1: [1, 2], 10: [3, 4]}) == [{1: 1, 10: 3}, {1: 2, 10: 4}]
def test_squeeze(self):
assert squeeze((4, )) == 4
assert squeeze({'a': 4}) == 4
assert squeeze([1, 3]) == (1, 3)
data = np.random.randn(3)
output = squeeze(data)
assert (output == data).all()
def test_default_get(self):
assert default_get({}, 'a', default_value=1, judge_fn=lambda x: x < 2) == 1
assert default_get({}, 'a', default_fn=lambda: 1, judge_fn=lambda x: x < 2) == 1
with pytest.raises(AssertionError):
default_get({}, 'a', default_fn=lambda: 1, judge_fn=lambda x: x < 0)
assert default_get({'val': 1}, 'val', default_value=2) == 1
def test_override(self):
class foo(object):
def fun(self):
raise NotImplementedError
class foo1(foo):
@override(foo)
def fun(self):
return "a"
with pytest.raises(NameError):
class foo2(foo):
@override(foo)
def func(self):
pass
with pytest.raises(NotImplementedError):
foo().fun()
foo1().fun()
def test_error_wrapper(self):
def good_ret(a, b=1):
return a + b
wrap_good_ret = error_wrapper(good_ret, 0)
assert good_ret(1) == wrap_good_ret(1)
def bad_ret(a, b=0):
return a / b
wrap_bad_ret = error_wrapper(bad_ret, 0)
assert wrap_bad_ret(1) == 0
wrap_bad_ret_with_customized_log = error_wrapper(bad_ret, 0, 'customized_information')
def test_list_split(self):
data = [i for i in range(10)]
output, residual = list_split(data, step=4)
assert len(output) == 2
assert output[1] == [4, 5, 6, 7]
assert residual == [8, 9]
output, residual = list_split(data, step=5)
assert len(output) == 2
assert output[1] == [5, 6, 7, 8, 9]
assert residual is None
@pytest.mark.unittest
class TestLimitedSpaceContainer():
def test_container(self):
container = LimitedSpaceContainer(0, 5)
first = container.acquire_space()
assert first
assert container.cur == 1
left = container.get_residual_space()
assert left == 4
assert container.cur == container.max_val == 5
no_space = container.acquire_space()
assert not no_space
container.increase_space()
six = container.acquire_space()
assert six
for i in range(6):
container.release_space()
assert container.cur == 5 - i
container.decrease_space()
assert container.max_val == 5
@pytest.mark.unittest
class TestDict:
def test_deep_merge_dicts(self):
dict1 = {
'a': 3,
'b': {
'c': 3,
'd': {
'e': 6,
'f': 5,
}
}
}
dict2 = {
'b': {
'c': 5,
'd': 6,
'g': 4,
}
}
new_dict = deep_merge_dicts(dict1, dict2)
assert new_dict['a'] == 3
assert isinstance(new_dict['b'], dict)
assert new_dict['b']['c'] == 5
assert new_dict['b']['c'] == 5
assert new_dict['b']['g'] == 4
def test_deep_update(self):
dict1 = {
'a': 3,
'b': {
'c': 3,
'd': {
'e': 6,
'f': 5,
},
'z': 4,
}
}
dict2 = {
'b': {
'c': 5,
'd': 6,
'g': 4,
}
}
with pytest.raises(RuntimeError):
new1 = deep_update(dict1, dict2, new_keys_allowed=False)
new2 = deep_update(dict1, dict2, new_keys_allowed=False, whitelist=['b'])
assert new2['a'] == 3
assert new2['b']['c'] == 5
assert new2['b']['d'] == 6
assert new2['b']['g'] == 4
assert new2['b']['z'] == 4
dict1 = {
'a': 3,
'b': {
'type': 'old',
'z': 4,
}
}
dict2 = {
'b': {
'type': 'new',
'c': 5,
}
}
new3 = deep_update(dict1, dict2, new_keys_allowed=True, whitelist=[], override_all_if_type_changes=['b'])
assert new3['a'] == 3
assert new3['b']['type'] == 'new'
assert new3['b']['c'] == 5
assert 'z' not in new3['b']
def test_flatten_dict(self):
dict = {
'a': 3,
'b': {
'c': 3,
'd': {
'e': 6,
'f': 5,
},
'z': 4,
}
}
flat = flatten_dict(dict)
assert flat['a'] == 3
assert flat['b/c'] == 3
assert flat['b/d/e'] == 6
assert flat['b/d/f'] == 5
assert flat['b/z'] == 4
def test_one_time_warning(self):
one_time_warning('test_one_time_warning')
def test_running_mean_std(self):
running = RunningMeanStd()
running.reset()
running.update(np.arange(1, 10))
assert running.mean == pytest.approx(5, abs=1e-4)
assert running.std == pytest.approx(2.582030, abs=1e-6)
running.update(np.arange(2, 11))
assert running.mean == pytest.approx(5.5, abs=1e-4)
assert running.std == pytest.approx(2.629981, abs=1e-6)
running.reset()
running.update(np.arange(1, 10))
assert pytest.approx(running.mean, abs=1e-4) == 5
assert running.mean == pytest.approx(5, abs=1e-4)
assert running.std == pytest.approx(2.582030, abs=1e-6)
new_shape = running.new_shape((2, 4), (3, ), (1, ))
assert isinstance(new_shape, tuple) and len(new_shape) == 3
running = RunningMeanStd(shape=(4, ))
running.reset()
running.update(np.random.random((10, 4)))
assert isinstance(running.mean, torch.Tensor) and running.mean.shape == (4, )
assert isinstance(running.std, torch.Tensor) and running.std.shape == (4, )
def test_split_data_generator(self):
def get_data():
return {
'obs': torch.randn(5),
'action': torch.randint(0, 10, size=(1, )),
'prev_state': [None, None],
'info': {
'other_obs': torch.randn(5)
},
}
data = [get_data() for _ in range(4)]
data = lists_to_dicts(data)
data['obs'] = torch.stack(data['obs'])
data['action'] = torch.stack(data['action'])
data['info'] = {'other_obs': torch.stack([t['other_obs'] for t in data['info']])}
assert len(data['obs']) == 4
data['NoneKey'] = None
generator = split_data_generator(data, 3)
generator_result = list(generator)
assert len(generator_result) == 2
assert generator_result[0]['NoneKey'] is None
assert len(generator_result[0]['obs']) == 3
assert generator_result[0]['info']['other_obs'].shape == (3, 5)
assert generator_result[1]['NoneKey'] is None
assert len(generator_result[1]['obs']) == 3
assert generator_result[1]['info']['other_obs'].shape == (3, 5)
generator = split_data_generator(data, 3, shuffle=False)
|