File size: 23,334 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
import os
import copy
from typing import Union, Any, Optional, List
import numpy as np
import math
import hickle
from easydict import EasyDict
from ding.worker.replay_buffer import IBuffer
from ding.utils import LockContext, LockContextType, BUFFER_REGISTRY, build_logger
from .utils import UsedDataRemover, PeriodicThruputMonitor
@BUFFER_REGISTRY.register('naive')
class NaiveReplayBuffer(IBuffer):
r"""
Overview:
Naive replay buffer, can store and sample data.
An naive implementation of replay buffer with no priority or any other advanced features.
This buffer refers to multi-thread/multi-process and guarantees thread-safe, which means that methods like
``sample``, ``push``, ``clear`` are all mutual to each other.
Interface:
start, close, push, update, sample, clear, count, state_dict, load_state_dict, default_config
Property:
replay_buffer_size, push_count
"""
config = dict(
type='naive',
replay_buffer_size=10000,
deepcopy=False,
# default `False` for serial pipeline
enable_track_used_data=False,
periodic_thruput_seconds=60,
)
def __init__(
self,
cfg: 'EasyDict', # noqa
tb_logger: Optional['SummaryWriter'] = None, # noqa
exp_name: Optional[str] = 'default_experiment',
instance_name: Optional[str] = 'buffer',
) -> None:
"""
Overview:
Initialize the buffer
Arguments:
- cfg (:obj:`dict`): Config dict.
- tb_logger (:obj:`Optional['SummaryWriter']`): Outer tb logger. Usually get this argument in serial mode.
- exp_name (:obj:`Optional[str]`): Name of this experiment.
- instance_name (:obj:`Optional[str]`): Name of this instance.
"""
self._exp_name = exp_name
self._instance_name = instance_name
self._cfg = cfg
self._replay_buffer_size = self._cfg.replay_buffer_size
self._deepcopy = self._cfg.deepcopy
# ``_data`` is a circular queue to store data (full data or meta data)
self._data = [None for _ in range(self._replay_buffer_size)]
# Current valid data count, indicating how many elements in ``self._data`` is valid.
self._valid_count = 0
# How many pieces of data have been pushed into this buffer, should be no less than ``_valid_count``.
self._push_count = 0
# Point to the tail position where next data can be inserted, i.e. latest inserted data's next position.
self._tail = 0
# Lock to guarantee thread safe
self._lock = LockContext(type_=LockContextType.THREAD_LOCK)
self._end_flag = False
self._enable_track_used_data = self._cfg.enable_track_used_data
if self._enable_track_used_data:
self._used_data_remover = UsedDataRemover()
if tb_logger is not None:
self._logger, _ = build_logger(
'./{}/log/{}'.format(self._exp_name, self._instance_name), self._instance_name, need_tb=False
)
self._tb_logger = tb_logger
else:
self._logger, self._tb_logger = build_logger(
'./{}/log/{}'.format(self._exp_name, self._instance_name),
self._instance_name,
)
# Periodic thruput. Here by default, monitor range is 60 seconds. You can modify it for free.
self._periodic_thruput_monitor = PeriodicThruputMonitor(
self._instance_name, EasyDict(seconds=self._cfg.periodic_thruput_seconds), self._logger, self._tb_logger
)
def start(self) -> None:
"""
Overview:
Start the buffer's used_data_remover thread if enables track_used_data.
"""
if self._enable_track_used_data:
self._used_data_remover.start()
def close(self) -> None:
"""
Overview:
Clear the buffer; Join the buffer's used_data_remover thread if enables track_used_data.
"""
self.clear()
if self._enable_track_used_data:
self._used_data_remover.close()
self._tb_logger.flush()
self._tb_logger.close()
def push(self, data: Union[List[Any], Any], cur_collector_envstep: int) -> None:
r"""
Overview:
Push a data into buffer.
Arguments:
- data (:obj:`Union[List[Any], Any]`): The data which will be pushed into buffer. Can be one \
(in `Any` type), or many(int `List[Any]` type).
- cur_collector_envstep (:obj:`int`): Collector's current env step. \
Not used in naive buffer, but preserved for compatibility.
"""
if isinstance(data, list):
self._extend(data, cur_collector_envstep)
self._periodic_thruput_monitor.push_data_count += len(data)
else:
self._append(data, cur_collector_envstep)
self._periodic_thruput_monitor.push_data_count += 1
def sample(self,
size: int,
cur_learner_iter: int,
sample_range: slice = None,
replace: bool = False) -> Optional[list]:
"""
Overview:
Sample data with length ``size``.
Arguments:
- size (:obj:`int`): The number of the data that will be sampled.
- cur_learner_iter (:obj:`int`): Learner's current iteration. \
Not used in naive buffer, but preserved for compatibility.
- sample_range (:obj:`slice`): Buffer slice for sampling, such as `slice(-10, None)`, which \
means only sample among the last 10 data
- replace (:obj:`bool`): Whether sample with replacement
Returns:
- sample_data (:obj:`list`): A list of data with length ``size``.
"""
if size == 0:
return []
can_sample = self._sample_check(size, replace)
if not can_sample:
return None
with self._lock:
indices = self._get_indices(size, sample_range, replace)
sample_data = self._sample_with_indices(indices, cur_learner_iter)
self._periodic_thruput_monitor.sample_data_count += len(sample_data)
return sample_data
def save_data(self, file_name: str):
if not os.path.exists(os.path.dirname(file_name)):
if os.path.dirname(file_name) != "":
os.makedirs(os.path.dirname(file_name))
hickle.dump(py_obj=self._data, file_obj=file_name)
def load_data(self, file_name: str):
self.push(hickle.load(file_name), 0)
def _append(self, ori_data: Any, cur_collector_envstep: int = -1) -> None:
r"""
Overview:
Append a data item into ``self._data``.
Arguments:
- ori_data (:obj:`Any`): The data which will be inserted.
- cur_collector_envstep (:obj:`int`): Not used in this method, but preserved for compatibility.
"""
with self._lock:
if self._deepcopy:
data = copy.deepcopy(ori_data)
else:
data = ori_data
self._push_count += 1
if self._data[self._tail] is None:
self._valid_count += 1
self._periodic_thruput_monitor.valid_count = self._valid_count
elif self._enable_track_used_data:
self._used_data_remover.add_used_data(self._data[self._tail])
self._data[self._tail] = data
self._tail = (self._tail + 1) % self._replay_buffer_size
def _extend(self, ori_data: List[Any], cur_collector_envstep: int = -1) -> None:
r"""
Overview:
Extend a data list into queue.
Add two keys in each data item, you can refer to ``_append`` for details.
Arguments:
- ori_data (:obj:`List[Any]`): The data list.
- cur_collector_envstep (:obj:`int`): Not used in this method, but preserved for compatibility.
"""
with self._lock:
if self._deepcopy:
data = copy.deepcopy(ori_data)
else:
data = ori_data
length = len(data)
# When updating ``_data`` and ``_use_count``, should consider two cases regarding
# the relationship between "tail + data length" and "replay buffer size" to check whether
# data will exceed beyond buffer's max length limitation.
if self._tail + length <= self._replay_buffer_size:
if self._valid_count != self._replay_buffer_size:
self._valid_count += length
self._periodic_thruput_monitor.valid_count = self._valid_count
elif self._enable_track_used_data:
for i in range(length):
self._used_data_remover.add_used_data(self._data[self._tail + i])
self._push_count += length
self._data[self._tail:self._tail + length] = data
else:
new_tail = self._tail
data_start = 0
residual_num = len(data)
while True:
space = self._replay_buffer_size - new_tail
L = min(space, residual_num)
if self._valid_count != self._replay_buffer_size:
self._valid_count += L
self._periodic_thruput_monitor.valid_count = self._valid_count
elif self._enable_track_used_data:
for i in range(L):
self._used_data_remover.add_used_data(self._data[new_tail + i])
self._push_count += L
self._data[new_tail:new_tail + L] = data[data_start:data_start + L]
residual_num -= L
assert residual_num >= 0
if residual_num == 0:
break
else:
new_tail = 0
data_start += L
# Update ``tail`` and ``next_unique_id`` after the whole list is pushed into buffer.
self._tail = (self._tail + length) % self._replay_buffer_size
def _sample_check(self, size: int, replace: bool = False) -> bool:
r"""
Overview:
Check whether this buffer has more than `size` datas to sample.
Arguments:
- size (:obj:`int`): Number of data that will be sampled.
- replace (:obj:`bool`): Whether sample with replacement.
Returns:
- can_sample (:obj:`bool`): Whether this buffer can sample enough data.
"""
if self._valid_count == 0:
print("The buffer is empty")
return False
if self._valid_count < size and not replace:
print(
"No enough elements for sampling without replacement (expect: {} / current: {})".format(
size, self._valid_count
)
)
return False
else:
return True
def update(self, info: dict) -> None:
r"""
Overview:
Naive Buffer does not need to update any info, but this method is preserved for compatibility.
"""
print(
'[BUFFER WARNING] Naive Buffer does not need to update any info, \
but `update` method is preserved for compatibility.'
)
def clear(self) -> None:
"""
Overview:
Clear all the data and reset the related variables.
"""
with self._lock:
for i in range(len(self._data)):
if self._data[i] is not None:
if self._enable_track_used_data:
self._used_data_remover.add_used_data(self._data[i])
self._data[i] = None
self._valid_count = 0
self._periodic_thruput_monitor.valid_count = self._valid_count
self._push_count = 0
self._tail = 0
def __del__(self) -> None:
"""
Overview:
Call ``close`` to delete the object.
"""
self.close()
def _get_indices(self, size: int, sample_range: slice = None, replace: bool = False) -> list:
r"""
Overview:
Get the sample index list.
Arguments:
- size (:obj:`int`): The number of the data that will be sampled
- sample_range (:obj:`slice`): Buffer slice for sampling, such as `slice(-10, None)`, which \
means only sample among the last 10 data
Returns:
- index_list (:obj:`list`): A list including all the sample indices, whose length should equal to ``size``.
"""
assert self._valid_count <= self._replay_buffer_size
if self._valid_count == self._replay_buffer_size:
tail = self._replay_buffer_size
else:
tail = self._tail
if sample_range is None:
indices = list(np.random.choice(a=tail, size=size, replace=replace))
else:
indices = list(range(tail))[sample_range]
indices = list(np.random.choice(indices, size=size, replace=replace))
return indices
def _sample_with_indices(self, indices: List[int], cur_learner_iter: int) -> list:
r"""
Overview:
Sample data with ``indices``.
Arguments:
- indices (:obj:`List[int]`): A list including all the sample indices.
- cur_learner_iter (:obj:`int`): Not used in this method, but preserved for compatibility.
Returns:
- data (:obj:`list`) Sampled data.
"""
data = []
for idx in indices:
assert self._data[idx] is not None, idx
if self._deepcopy:
copy_data = copy.deepcopy(self._data[idx])
else:
copy_data = self._data[idx]
data.append(copy_data)
return data
def count(self) -> int:
"""
Overview:
Count how many valid datas there are in the buffer.
Returns:
- count (:obj:`int`): Number of valid data.
"""
return self._valid_count
def state_dict(self) -> dict:
"""
Overview:
Provide a state dict to keep a record of current buffer.
Returns:
- state_dict (:obj:`Dict[str, Any]`): A dict containing all important values in the buffer. \
With the dict, one can easily reproduce the buffer.
"""
return {
'data': self._data,
'tail': self._tail,
'valid_count': self._valid_count,
'push_count': self._push_count,
}
def load_state_dict(self, _state_dict: dict) -> None:
"""
Overview:
Load state dict to reproduce the buffer.
Returns:
- state_dict (:obj:`Dict[str, Any]`): A dict containing all important values in the buffer.
"""
assert 'data' in _state_dict
if set(_state_dict.keys()) == set(['data']):
self._extend(_state_dict['data'])
else:
for k, v in _state_dict.items():
setattr(self, '_{}'.format(k), v)
@property
def replay_buffer_size(self) -> int:
return self._replay_buffer_size
@property
def push_count(self) -> int:
return self._push_count
@BUFFER_REGISTRY.register('elastic')
class ElasticReplayBuffer(NaiveReplayBuffer):
r"""
Overview:
Elastic replay buffer, it stores data and support dynamically change the buffer size.
An naive implementation of replay buffer with no priority or any other advanced features.
This buffer refers to multi-thread/multi-process and guarantees thread-safe, which means that methods like
``sample``, ``push``, ``clear`` are all mutual to each other.
Interface:
start, close, push, update, sample, clear, count, state_dict, load_state_dict, default_config
Property:
replay_buffer_size, push_count
"""
config = dict(
type='elastic',
replay_buffer_size=10000,
deepcopy=False,
# default `False` for serial pipeline
enable_track_used_data=False,
periodic_thruput_seconds=60,
)
def __init__(
self,
cfg: 'EasyDict', # noqa
tb_logger: Optional['SummaryWriter'] = None, # noqa
exp_name: Optional[str] = 'default_experiment',
instance_name: Optional[str] = 'buffer',
) -> None:
"""
Overview:
Initialize the buffer
Arguments:
- cfg (:obj:`dict`): Config dict.
- tb_logger (:obj:`Optional['SummaryWriter']`): Outer tb logger. Usually get this argument in serial mode.
- exp_name (:obj:`Optional[str]`): Name of this experiment.
- instance_name (:obj:`Optional[str]`): Name of this instance.
"""
super().__init__(cfg, tb_logger, exp_name, instance_name)
self._set_buffer_size = self._cfg.set_buffer_size
self._current_buffer_size = self._set_buffer_size(0) # Set the buffer size at the 0-th envstep.
# The variable 'current_buffer_size' restricts how many samples the buffer can use for sampling
def _sample_check(self, size: int, replace: bool = False) -> bool:
r"""
Overview:
Check whether this buffer has more than `size` datas to sample.
Arguments:
- size (:obj:`int`): Number of data that will be sampled.
- replace (:obj:`bool`): Whether sample with replacement.
Returns:
- can_sample (:obj:`bool`): Whether this buffer can sample enough data.
"""
valid_count = min(self._valid_count, self._current_buffer_size)
if valid_count == 0:
print("The buffer is empty")
return False
if valid_count < size and not replace:
print(
"No enough elements for sampling without replacement (expect: {} / current: {})".format(
size, self._valid_count
)
)
return False
else:
return True
def _get_indices(self, size: int, sample_range: slice = None, replace: bool = False) -> list:
r"""
Overview:
Get the sample index list.
Arguments:
- size (:obj:`int`): The number of the data that will be sampled.
- replace (:obj:`bool`): Whether sample with replacement.
Returns:
- index_list (:obj:`list`): A list including all the sample indices, whose length should equal to ``size``.
"""
assert self._valid_count <= self._replay_buffer_size
assert sample_range is None # not support
range = min(self._valid_count, self._current_buffer_size)
indices = list(
(self._tail - 1 - np.random.choice(a=range, size=size, replace=replace)) % self._replay_buffer_size
)
return indices
def update(self, envstep):
self._current_buffer_size = self._set_buffer_size(envstep)
@BUFFER_REGISTRY.register('sequence')
class SequenceReplayBuffer(NaiveReplayBuffer):
r"""
Overview:
Interface:
start, close, push, update, sample, clear, count, state_dict, load_state_dict, default_config
Property:
replay_buffer_size, push_count
"""
def sample(
self,
batch: int,
sequence: int,
cur_learner_iter: int,
sample_range: slice = None,
replace: bool = False
) -> Optional[list]:
"""
Overview:
Sample data with length ``size``.
Arguments:
- size (:obj:`int`): The number of the data that will be sampled.
- sequence (:obj:`int`): The length of the sequence of a data that will be sampled.
- cur_learner_iter (:obj:`int`): Learner's current iteration. \
Not used in naive buffer, but preserved for compatibility.
- sample_range (:obj:`slice`): Buffer slice for sampling, such as `slice(-10, None)`, which \
means only sample among the last 10 data
- replace (:obj:`bool`): Whether sample with replacement
Returns:
- sample_data (:obj:`list`): A list of data with length ``size``.
"""
if batch == 0:
return []
can_sample = self._sample_check(batch * sequence, replace)
if not can_sample:
return None
with self._lock:
indices = self._get_indices(batch, sequence, sample_range, replace)
sample_data = self._sample_with_indices(indices, sequence, cur_learner_iter)
self._periodic_thruput_monitor.sample_data_count += len(sample_data)
return sample_data
def _get_indices(self, size: int, sequence: int, sample_range: slice = None, replace: bool = False) -> list:
r"""
Overview:
Get the sample index list.
Arguments:
- size (:obj:`int`): The number of the data that will be sampled
- sample_range (:obj:`slice`): Buffer slice for sampling, such as `slice(-10, None)`, which \
means only sample among the last 10 data
Returns:
- index_list (:obj:`list`): A list including all the sample indices, whose length should equal to ``size``.
"""
assert self._valid_count <= self._replay_buffer_size
if self._valid_count == self._replay_buffer_size:
tail = self._replay_buffer_size
else:
tail = self._tail
episodes = math.ceil(self._valid_count / 500)
batch = 0
indices = []
if sample_range is None:
while batch < size:
episode = np.random.choice(episodes)
length = tail - episode * 500 if tail - episode * 500 < 500 else 500
available = length - sequence
if available < 1:
continue
list(range(episode * 500, episode * 500 + available))
indices.append(np.random.randint(episode * 500, episode * 500 + available + 1))
batch += 1
else:
raise NotImplementedError("sample_range is not implemented in this version")
return indices
def _sample_with_indices(self, indices: List[int], sequence: int, cur_learner_iter: int) -> list:
r"""
Overview:
Sample data with ``indices``.
Arguments:
- indices (:obj:`List[int]`): A list including all the sample indices.
- cur_learner_iter (:obj:`int`): Not used in this method, but preserved for compatibility.
Returns:
- data (:obj:`list`) Sampled data.
"""
data = []
for idx in indices:
assert self._data[idx] is not None, idx
if self._deepcopy:
copy_data = copy.deepcopy(self._data[idx:idx + sequence])
else:
copy_data = self._data[idx:idx + sequence]
data.append(copy_data)
return data
|