File size: 11,421 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import itertools
import numpy as np
import copy
import torch
from torch import nn

from ding.utils import WORLD_MODEL_REGISTRY
from ding.utils.data import default_collate
from ding.world_model.base_world_model import HybridWorldModel
from ding.world_model.model.ensemble import EnsembleModel, StandardScaler
from ding.torch_utils import fold_batch, unfold_batch, unsqueeze_repeat


@WORLD_MODEL_REGISTRY.register('mbpo')
class MBPOWorldModel(HybridWorldModel, nn.Module):
    config = dict(
        model=dict(
            ensemble_size=7,
            elite_size=5,
            state_size=None,
            action_size=None,
            reward_size=1,
            hidden_size=200,
            use_decay=False,
            batch_size=256,
            holdout_ratio=0.2,
            max_epochs_since_update=5,
            deterministic_rollout=True,
        ),
    )

    def __init__(self, cfg, env, tb_logger):
        HybridWorldModel.__init__(self, cfg, env, tb_logger)
        nn.Module.__init__(self)

        cfg = cfg.model
        self.ensemble_size = cfg.ensemble_size
        self.elite_size = cfg.elite_size
        self.state_size = cfg.state_size
        self.action_size = cfg.action_size
        self.reward_size = cfg.reward_size
        self.hidden_size = cfg.hidden_size
        self.use_decay = cfg.use_decay
        self.batch_size = cfg.batch_size
        self.holdout_ratio = cfg.holdout_ratio
        self.max_epochs_since_update = cfg.max_epochs_since_update
        self.deterministic_rollout = cfg.deterministic_rollout

        self.ensemble_model = EnsembleModel(
            self.state_size,
            self.action_size,
            self.reward_size,
            self.ensemble_size,
            self.hidden_size,
            use_decay=self.use_decay
        )
        self.scaler = StandardScaler(self.state_size + self.action_size)

        if self._cuda:
            self.cuda()

        self.ensemble_mse_losses = []
        self.model_variances = []
        self.elite_model_idxes = []

    def step(self, obs, act, batch_size=8192, keep_ensemble=False):
        if len(act.shape) == 1:
            act = act.unsqueeze(1)
        if self._cuda:
            obs = obs.cuda()
            act = act.cuda()
        inputs = torch.cat([obs, act], dim=-1)
        if keep_ensemble:
            inputs, dim = fold_batch(inputs, 1)
            inputs = self.scaler.transform(inputs)
            inputs = unfold_batch(inputs, dim)
        else:
            inputs = self.scaler.transform(inputs)
        # predict
        ensemble_mean, ensemble_var = [], []
        batch_dim = 0 if len(inputs.shape) == 2 else 1
        for i in range(0, inputs.shape[batch_dim], batch_size):
            if keep_ensemble:
                # inputs: [E, B, D]
                input = inputs[:, i:i + batch_size]
            else:
                # input:  [B, D]
                input = unsqueeze_repeat(inputs[i:i + batch_size], self.ensemble_size)
            b_mean, b_var = self.ensemble_model(input, ret_log_var=False)
            ensemble_mean.append(b_mean)
            ensemble_var.append(b_var)
        ensemble_mean = torch.cat(ensemble_mean, 1)
        ensemble_var = torch.cat(ensemble_var, 1)
        if keep_ensemble:
            ensemble_mean[:, :, 1:] += obs
        else:
            ensemble_mean[:, :, 1:] += obs.unsqueeze(0)
        ensemble_std = ensemble_var.sqrt()
        # sample from the predicted distribution
        if self.deterministic_rollout:
            ensemble_sample = ensemble_mean
        else:
            ensemble_sample = ensemble_mean + torch.randn_like(ensemble_mean).to(ensemble_mean) * ensemble_std
        if keep_ensemble:
            # [E, B, D]
            rewards, next_obs = ensemble_sample[:, :, 0], ensemble_sample[:, :, 1:]
            next_obs_flatten, dim = fold_batch(next_obs)
            done = unfold_batch(self.env.termination_fn(next_obs_flatten), dim)
            return rewards, next_obs, done
        # sample from ensemble
        model_idxes = torch.from_numpy(np.random.choice(self.elite_model_idxes, size=len(obs))).to(inputs.device)
        batch_idxes = torch.arange(len(obs)).to(inputs.device)
        sample = ensemble_sample[model_idxes, batch_idxes]
        rewards, next_obs = sample[:, 0], sample[:, 1:]

        return rewards, next_obs, self.env.termination_fn(next_obs)

    def eval(self, env_buffer, envstep, train_iter):
        data = env_buffer.sample(self.eval_freq, train_iter)
        data = default_collate(data)
        data['done'] = data['done'].float()
        data['weight'] = data.get('weight', None)
        obs = data['obs']
        action = data['action']
        reward = data['reward']
        next_obs = data['next_obs']
        if len(reward.shape) == 1:
            reward = reward.unsqueeze(1)
        if len(action.shape) == 1:
            action = action.unsqueeze(1)

        # build eval samples
        inputs = torch.cat([obs, action], dim=1)
        labels = torch.cat([reward, next_obs - obs], dim=1)
        if self._cuda:
            inputs = inputs.cuda()
            labels = labels.cuda()

        # normalize
        inputs = self.scaler.transform(inputs)

        # repeat for ensemble
        inputs = unsqueeze_repeat(inputs, self.ensemble_size)
        labels = unsqueeze_repeat(labels, self.ensemble_size)

        # eval
        with torch.no_grad():
            mean, logvar = self.ensemble_model(inputs, ret_log_var=True)
            loss, mse_loss = self.ensemble_model.loss(mean, logvar, labels)
            ensemble_mse_loss = torch.pow(mean.mean(0) - labels[0], 2)
            model_variance = mean.var(0)
            self.tb_logger.add_scalar('env_model_step/eval_mse_loss', mse_loss.mean().item(), envstep)
            self.tb_logger.add_scalar('env_model_step/eval_ensemble_mse_loss', ensemble_mse_loss.mean().item(), envstep)
            self.tb_logger.add_scalar('env_model_step/eval_model_variances', model_variance.mean().item(), envstep)

        self.last_eval_step = envstep

    def train(self, env_buffer, envstep, train_iter):
        data = env_buffer.sample(env_buffer.count(), train_iter)
        data = default_collate(data)
        data['done'] = data['done'].float()
        data['weight'] = data.get('weight', None)
        obs = data['obs']
        action = data['action']
        reward = data['reward']
        next_obs = data['next_obs']
        if len(reward.shape) == 1:
            reward = reward.unsqueeze(1)
        if len(action.shape) == 1:
            action = action.unsqueeze(1)
        # build train samples
        inputs = torch.cat([obs, action], dim=1)
        labels = torch.cat([reward, next_obs - obs], dim=1)
        if self._cuda:
            inputs = inputs.cuda()
            labels = labels.cuda()
        # train
        logvar = self._train(inputs, labels)
        self.last_train_step = envstep
        # log
        if self.tb_logger is not None:
            for k, v in logvar.items():
                self.tb_logger.add_scalar('env_model_step/' + k, v, envstep)

    def _train(self, inputs, labels):
        #split
        num_holdout = int(inputs.shape[0] * self.holdout_ratio)
        train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
        holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]

        #normalize
        self.scaler.fit(train_inputs)
        train_inputs = self.scaler.transform(train_inputs)
        holdout_inputs = self.scaler.transform(holdout_inputs)

        #repeat for ensemble
        holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
        holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)

        self._epochs_since_update = 0
        self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
        self._save_states()
        for epoch in itertools.count():

            train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
                                     for _ in range(self.ensemble_size)]).to(train_inputs.device)
            self.mse_loss = []
            for start_pos in range(0, train_inputs.shape[0], self.batch_size):
                idx = train_idx[:, start_pos:start_pos + self.batch_size]
                train_input = train_inputs[idx]
                train_label = train_labels[idx]
                mean, logvar = self.ensemble_model(train_input, ret_log_var=True)
                loss, mse_loss = self.ensemble_model.loss(mean, logvar, train_label)
                self.ensemble_model.train(loss)
                self.mse_loss.append(mse_loss.mean().item())
            self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)

            with torch.no_grad():
                holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True)
                _, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels)
                self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
                break_train = self._save_best(epoch, holdout_mse_loss)
                if break_train:
                    break

        self._load_states()
        with torch.no_grad():
            holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True)
            _, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels)
            sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
            sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
            sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
            self.elite_model_idxes = sorted_loss_idx[:self.elite_size]
            self.top_holdout_mse_loss = sorted_loss[0]
            self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
            self.bottom_holdout_mse_loss = sorted_loss[-1]
            self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
        return {
            'mse_loss': self.mse_loss,
            'curr_holdout_mse_loss': self.curr_holdout_mse_loss,
            'best_holdout_mse_loss': self.best_holdout_mse_loss,
            'top_holdout_mse_loss': self.top_holdout_mse_loss,
            'middle_holdout_mse_loss': self.middle_holdout_mse_loss,
            'bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
        }

    def _save_states(self, ):
        self._states = copy.deepcopy(self.state_dict())

    def _save_state(self, id):
        state_dict = self.state_dict()
        for k, v in state_dict.items():
            if 'weight' in k or 'bias' in k:
                self._states[k].data[id] = copy.deepcopy(v.data[id])

    def _load_states(self):
        self.load_state_dict(self._states)

    def _save_best(self, epoch, holdout_losses):
        updated = False
        for i in range(len(holdout_losses)):
            current = holdout_losses[i]
            _, best = self._snapshots[i]
            improvement = (best - current) / best
            if improvement > 0.01:
                self._snapshots[i] = (epoch, current)
                self._save_state(i)
                # self._save_state(i)
                updated = True
                # improvement = (best - current) / best

        if updated:
            self._epochs_since_update = 0
        else:
            self._epochs_since_update += 1
        return self._epochs_since_update > self.max_epochs_since_update