File size: 5,233 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from typing import Any, List, Union, Sequence, Optional
import copy
import numpy as np
import gym

from ding.envs import BaseEnv, BaseEnvTimestep, update_shape
from ding.utils import ENV_REGISTRY
from ding.torch_utils import to_tensor, to_ndarray, to_list
from .atari_wrappers import wrap_deepmind, wrap_deepmind_mr
from ding.envs import ObsPlusPrevActRewWrapper


@ENV_REGISTRY.register("atari")
class AtariEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._replay_path = None

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = self._make_env()
            if self._replay_path is not None:
                self._env = gym.wrappers.RecordVideo(
                    self._env,
                    video_folder=self._replay_path,
                    episode_trigger=lambda episode_id: True,
                    name_prefix='rl-video-{}'.format(id(self))
                )
            if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward:
                self._env = ObsPlusPrevActRewWrapper(self._env)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        obs = self._env.reset()
        obs = to_ndarray(obs)
        self._eval_episode_return = 0.
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        assert isinstance(action, np.ndarray), type(action)
        action = action.item()
        obs, rew, done, info = self._env.step(action)
        # self._env.render()
        self._eval_episode_return += rew
        obs = to_ndarray(obs)
        rew = to_ndarray([rew]).astype(np.float32)  # wrapped to be transferred to a Tensor with shape (1,)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        return BaseEnvTimestep(obs, rew, done, info)

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def _make_env(self):
        return wrap_deepmind(
            self._cfg.env_id,
            frame_stack=self._cfg.frame_stack,
            episode_life=self._cfg.is_train,
            clip_rewards=self._cfg.is_train
        )

    def __repr__(self) -> str:
        return "DI-engine Atari Env({})".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = True
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = False
        return [cfg for _ in range(evaluator_env_num)]


@ENV_REGISTRY.register('atari_mr')
class AtariEnvMR(AtariEnv):

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = self._make_env()
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed'):
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        obs = self._env.reset()
        obs = to_ndarray(obs)
        self._eval_episode_return = 0.
        return obs

    def _make_env(self):
        return wrap_deepmind_mr(
            self._cfg.env_id,
            frame_stack=self._cfg.frame_stack,
            episode_life=self._cfg.is_train,
            clip_rewards=self._cfg.is_train
        )