File size: 17,343 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import argparse
import os
import numpy as np


def str2bool(v):
    return v.lower() in ('true', '1')


arg_lists = []
parser = argparse.ArgumentParser()


def add_argument_group(name):
    arg = parser.add_argument_group(name)
    arg_lists.append(arg)
    return arg


# crm
game_arg = add_argument_group('BeerGame')
game_arg.add_argument('--task', type=str, default='bg')
game_arg.add_argument(
    '--fixedAction',
    type=str2bool,
    default='False',
    help='if you want to have actions in [0,actionMax] set it to True. with False it will set it [actionLow, actionUp]'
)
game_arg.add_argument(
    '--observation_data',
    type=str2bool,
    default=False,
    help='if it is True, then it uses the data that is generated by based on few real world observation'
)
game_arg.add_argument('--data_id', type=int, default=22, help='the default item id for the basket dataset')
game_arg.add_argument('--TLow', type=int, default=100, help='duration of one GAME (lower bound)')
game_arg.add_argument('--TUp', type=int, default=100, help='duration of one GAME (upper bound)')
game_arg.add_argument(
    '--demandDistribution',
    type=int,
    default=0,
    help='0=uniform, 1=normal distribution, 2=the sequence of 4,4,4,4,8,..., 3= basket data, 4= forecast data'
)
game_arg.add_argument(
    '--scaled', type=str2bool, default=False, help='if true it uses the (if) existing scaled parameters'
)
game_arg.add_argument('--demandSize', type=int, default=6100, help='the size of demand dataset')
game_arg.add_argument('--demandLow', type=int, default=0, help='the lower bound of random demand')
game_arg.add_argument('--demandUp', type=int, default=3, help='the upper bound of random demand')
game_arg.add_argument('--demandMu', type=float, default=10, help='the mu of the normal distribution for demand ')
game_arg.add_argument('--demandSigma', type=float, default=2, help='the sigma of the normal distribution for demand ')
game_arg.add_argument('--actionMax', type=int, default=2, help='it works when fixedAction is True')
game_arg.add_argument(
    '--actionUp', type=int, default=2, help='bounds on my decision (upper bound), it works when fixedAction is True'
)
game_arg.add_argument(
    '--actionLow', type=int, default=-2, help='bounds on my decision (lower bound), it works when fixedAction is True'
)
game_arg.add_argument(
    '--action_step', type=int, default=1, help='The obtained action value by dnn is multiplied by this value'
)
game_arg.add_argument('--actionList', type=list, default=[], help='The list of the available actions')
game_arg.add_argument('--actionListLen', type=int, default=0, help='the length of the action list')
game_arg.add_argument(
    '--actionListOpt', type=int, default=0, help='the action list which is used in optimal and sterman'
)
game_arg.add_argument('--actionListLenOpt', type=int, default=0, help='the length of the actionlistopt')
game_arg.add_argument('--agentTypes', type=list, default=['dnn', 'dnn', 'dnn', 'dnn'], help='the player types')
game_arg.add_argument(
    '--agent_type1', type=str, default='dnn', help='the player types for agent 1, it can be dnn, Strm, bs, rnd'
)
game_arg.add_argument(
    '--agent_type2', type=str, default='dnn', help='the player types for agent 2, it can be dnn, Strm, bs, rnd'
)
game_arg.add_argument(
    '--agent_type3', type=str, default='dnn', help='the player types for agent 3, it can be dnn, Strm, bs, rnd'
)
game_arg.add_argument(
    '--agent_type4', type=str, default='dnn', help='the player types for agent 4, it can be dnn, Strm, bs, rnd'
)
game_arg.add_argument('--NoAgent', type=int, default=4, help='number of agents, currently it should be in {1,2,3,4}')
game_arg.add_argument('--cp1', type=float, default=2.0, help='shortage cost of player 1')
game_arg.add_argument('--cp2', type=float, default=0.0, help='shortage cost of player 2')
game_arg.add_argument('--cp3', type=float, default=0.0, help='shortage cost of player 3')
game_arg.add_argument('--cp4', type=float, default=0.0, help='shortage cost of player 4')
game_arg.add_argument('--ch1', type=float, default=2.0, help='holding cost of player 1')
game_arg.add_argument('--ch2', type=float, default=2.0, help='holding cost of player 2')
game_arg.add_argument('--ch3', type=float, default=2.0, help='holding cost of player 3')
game_arg.add_argument('--ch4', type=float, default=2.0, help='holding cost of player 4')
game_arg.add_argument('--alpha_b1', type=float, default=-0.5, help='alpha of Sterman formula parameter for player 1')
game_arg.add_argument('--alpha_b2', type=float, default=-0.5, help='alpha of Sterman formula parameter for player 2')
game_arg.add_argument('--alpha_b3', type=float, default=-0.5, help='alpha of Sterman formula parameter for player 3')
game_arg.add_argument('--alpha_b4', type=float, default=-0.5, help='alpha of Sterman formula parameter for player 4')
game_arg.add_argument('--betta_b1', type=float, default=-0.2, help='beta of Sterman formula parameter for player 1')
game_arg.add_argument('--betta_b2', type=float, default=-0.2, help='beta of Sterman formula parameter for player 2')
game_arg.add_argument('--betta_b3', type=float, default=-0.2, help='beta of Sterman formula parameter for player 3')
game_arg.add_argument('--betta_b4', type=float, default=-0.2, help='beta of Sterman formula parameter for player 4')
game_arg.add_argument('--eta', type=list, default=[0, 4, 4, 4], help='the total cost regulazer')
game_arg.add_argument('--distCoeff', type=int, default=20, help='the total cost regulazer')
game_arg.add_argument(
    '--ifUseTotalReward',
    type=str2bool,
    default='False',
    help='if you want to have the total rewards in the experience replay, set it to true.'
)
game_arg.add_argument(
    '--ifUsedistTotReward',
    type=str2bool,
    default='True',
    help='If use correction to the rewards in the experience replay for all iterations of current game'
)
game_arg.add_argument(
    '--ifUseASAO',
    type=str2bool,
    default='True',
    help='if use AS and AO, i.e., received shipment and received orders in the input of DNN'
)
game_arg.add_argument('--ifUseActionInD', type=str2bool, default='False', help='if use action in the input of DNN')
game_arg.add_argument(
    '--stateDim', type=int, default=5, help='Number of elements in the state desciptor - Depends on ifUseASAO'
)
game_arg.add_argument('--iftl', type=str2bool, default=False, help='if apply transfer learning')
game_arg.add_argument(
    '--ifTransferFromSmallerActionSpace',
    type=str2bool,
    default=False,
    help='if want to transfer knowledge from a network with different action space size.'
)
game_arg.add_argument(
    '--baseActionSize',
    type=int,
    default=5,
    help='if ifTransferFromSmallerActionSpace is true, this determines the size of action space of saved network'
)
game_arg.add_argument(
    '--tlBaseBrain',
    type=int,
    default=3,
    help='the gameConfig of the base network for re-training with transfer-learning'
)
game_arg.add_argument('--baseDemandDistribution', type=int, default=0, help='same as the demandDistribution')
game_arg.add_argument(
    '--MultiAgent', type=str2bool, default=False, help='if run multi-agent RL model, not fully operational'
)
game_arg.add_argument(
    '--MultiAgentRun',
    type=list,
    default=[True, True, True, True],
    help='In the multi-RL setting, it determines which agent should get training.'
)
game_arg.add_argument(
    '--if_use_AS_t_plus_1', type=str2bool, default='False', help='if use AS[t+1], not AS[t] in the input of DNN'
)
game_arg.add_argument(
    '--ifSinglePathExist',
    type=str2bool,
    default=False,
    help='If true it uses the predefined path in pre_model_dir and does not merge it with demandDistribution.'
)
game_arg.add_argument('--gamma', type=float, default=.99, help='discount factor for reward')
game_arg.add_argument(
    '--multPerdInpt', type=int, default=10, help='Number of history records which we feed into network'
)

# parameters of the leadtimes
leadtimes_arg = add_argument_group('leadtimes')
leadtimes_arg.add_argument(
    '--leadRecItemLow', type=list, default=[2, 2, 2, 4], help='the min lead time for receiving items'
)
leadtimes_arg.add_argument(
    '--leadRecItemUp', type=list, default=[2, 2, 2, 4], help='the max lead time for receiving items'
)
leadtimes_arg.add_argument(
    '--leadRecOrderLow', type=int, default=[2, 2, 2, 0], help='the min lead time for receiving orders'
)
leadtimes_arg.add_argument(
    '--leadRecOrderUp', type=int, default=[2, 2, 2, 0], help='the max lead time for receiving orders'
)
leadtimes_arg.add_argument('--ILInit', type=list, default=[0, 0, 0, 0], help='')
leadtimes_arg.add_argument('--AOInit', type=list, default=[0, 0, 0, 0], help='')
leadtimes_arg.add_argument('--ASInit', type=list, default=[0, 0, 0, 0], help='the initial shipment of each agent')
leadtimes_arg.add_argument('--leadRecItem1', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem2', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem3', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecItem4', type=int, default=2, help='the min lead time for receiving items')
leadtimes_arg.add_argument('--leadRecOrder1', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder2', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder3', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--leadRecOrder4', type=int, default=2, help='the min lead time for receiving order')
leadtimes_arg.add_argument('--ILInit1', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit2', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit3', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--ILInit4', type=int, default=0, help='the initial inventory level of the agent')
leadtimes_arg.add_argument('--AOInit1', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit2', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit3', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--AOInit4', type=int, default=0, help='the initial arriving order of the agent')
leadtimes_arg.add_argument('--ASInit1', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit2', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit3', type=int, default=0, help='the initial arriving shipment of the agent')
leadtimes_arg.add_argument('--ASInit4', type=int, default=0, help='the initial arriving shipment of the agent')

# test
test_arg = add_argument_group('testing')
test_arg.add_argument(
    '--testRepeatMid',
    type=int,
    default=50,
    help='it is number of episodes which is going to be used for testing in the middle of training'
)
test_arg.add_argument('--testInterval', type=int, default=100, help='every xx games compute "test error"')
test_arg.add_argument(
    '--ifSaveFigure', type=str2bool, default=True, help='if is it True, save the figures in each testing.'
)
test_arg.add_argument(
    '--if_titled_figure',
    type=str2bool,
    default='True',
    help='if is it True, save the figures with details in the title.'
)
test_arg.add_argument(
    '--ifsaveHistInterval', type=str2bool, default=False, help='if every xx games save details of the episode'
)
test_arg.add_argument('--saveHistInterval', type=int, default=50000, help='every xx games save details of the play')
test_arg.add_argument('--Ttest', type=int, default=100, help='it defines the number of periods in the test cases')
test_arg.add_argument(
    '--ifOptimalSolExist',
    type=str2bool,
    default=True,
    help='if the instance has optimal base stock policy, set it to True, otherwise it should be False.'
)
test_arg.add_argument('--f1', type=float, default=8, help='base stock policy decision of player 1')
test_arg.add_argument('--f2', type=float, default=8, help='base stock policy decision of player 2')
test_arg.add_argument('--f3', type=float, default=0, help='base stock policy decision of player 3')
test_arg.add_argument('--f4', type=float, default=0, help='base stock policy decision of player 4')
test_arg.add_argument(
    '--f_init',
    type=list,
    default=[32, 32, 32, 24],
    help='base stock policy decision for 4 time-steps on the C(4,8) demand distribution'
)
test_arg.add_argument('--use_initial_BS', type=str2bool, default=False, help='If use f_init set it to True')

# reporting
reporting_arg = add_argument_group('reporting')
reporting_arg.add_argument('--Rsltdnn', type=list, default=[], help='the result of dnn play tests will be saved here')
reporting_arg.add_argument(
    '--RsltRnd', type=list, default=[], help='the result of random play tests will be saved here'
)
reporting_arg.add_argument(
    '--RsltStrm', type=list, default=[], help='the result of heuristic fomula play tests will be saved here'
)
reporting_arg.add_argument(
    '--Rsltbs', type=list, default=[], help='the result of optimal play tests will be saved here'
)
reporting_arg.add_argument(
    '--ifSaveHist',
    type=str2bool,
    default='False',
    help=
    'if it is true, saves history, prediction, and the randBatch in each period, WARNING: just make it True in small runs, it saves huge amount of files.'
)


# buildActionList: actions for the beer game problem
def buildActionList(config):
    aDiv = 1  # difference in the action list
    if config.fixedAction:
        actions = list(
            range(0, config.actionMax + 1, aDiv)
        )  # If you put the second argument =11, creates an actionlist from 0..xx
    else:
        actions = list(range(config.actionLow, config.actionUp + 1, aDiv))
    return actions


# specify the dimension of the state of the game
def getStateDim(config):
    if config.ifUseASAO:
        stateDim = 5
    else:
        stateDim = 3

    if config.ifUseActionInD:
        stateDim += 1

    return stateDim


def set_optimal(config):
    if config.demandDistribution == 0:
        if config.cp1 == 2 and config.ch1 == 2 and config.ch2 == 2 and config.ch3 == 2 and config.ch4 == 2:
            config.f1 = 8.
            config.f2 = 8.
            config.f3 = 0.
            config.f4 = 0.


def get_config():
    config, unparsed = parser.parse_known_args()
    config = update_config(config)

    return config, unparsed


def fill_leadtime_initial_values(config):
    config.leadRecItemLow = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]
    config.leadRecItemUp = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]
    config.leadRecOrderLow = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3, config.leadRecOrder4]
    config.leadRecOrderUp = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3, config.leadRecOrder4]
    config.ILInit = [config.ILInit1, config.ILInit2, config.ILInit3, config.ILInit4]
    config.AOInit = [config.AOInit1, config.AOInit2, config.AOInit3, config.AOInit4]
    config.ASInit = [config.ASInit1, config.ASInit2, config.ASInit3, config.ASInit4]


def get_auxuliary_leadtime_initial_values(config):
    config.leadRecOrderUp_aux = [config.leadRecOrder1, config.leadRecOrder2, config.leadRecOrder3, config.leadRecOrder4]
    config.leadRecItemUp_aux = [config.leadRecItem1, config.leadRecItem2, config.leadRecItem3, config.leadRecItem4]


def fix_lead_time_manufacturer(config):
    if config.leadRecOrder4 > 0:
        config.leadRecItem4 += config.leadRecOrder4
        config.leadRecOrder4 = 0


def set_sterman_parameters(config):
    config.alpha_b = [config.alpha_b1, config.alpha_b2, config.alpha_b3, config.alpha_b4]
    config.betta_b = [config.betta_b1, config.betta_b2, config.betta_b3, config.betta_b4]


def update_config(config):
    config.actionList = buildActionList(config)  # The list of the available actions
    config.actionListLen = len(config.actionList)  # the length of the action list

    set_optimal(config)
    config.f = [config.f1, config.f2, config.f3, config.f4]  # [6.4, 2.88, 2.08, 0.8]

    config.actionListLen = len(config.actionList)
    if config.demandDistribution == 0:
        config.actionListOpt = list(range(0, int(max(config.actionUp * 30 + 1, 3 * sum(config.f))), 1))
    else:
        config.actionListOpt = list(range(0, int(max(config.actionUp * 30 + 1, 7 * sum(config.f))), 1))
    config.actionListLenOpt = len(config.actionListOpt)

    config.c_h = [config.ch1, config.ch2, config.ch3, config.ch4]
    config.c_p = [config.cp1, config.cp2, config.cp3, config.cp4]

    config.stateDim = getStateDim(config)  # Number of elements in the state description - Depends on ifUseASAO
    get_auxuliary_leadtime_initial_values(config)
    fix_lead_time_manufacturer(config)
    fill_leadtime_initial_values(config)
    set_sterman_parameters(config)

    return config