File size: 3,868 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from typing import Any, List, Union, Optional
import time
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep, FrameStackWrapper
from ding.torch_utils import to_ndarray, to_list
from ding.envs.common.common_function import affine_transform
from ding.utils import ENV_REGISTRY


@ENV_REGISTRY.register('bipedalwalker')
class BipedalWalkerEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._act_scale = cfg.act_scale
        self._rew_clip = cfg.rew_clip
        if "replay_path" in cfg:
            self._replay_path = cfg.replay_path
        else:
            self._replay_path = None

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = gym.make('BipedalWalker-v3')
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        if self._replay_path is not None:
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix='rl-video-{}'.format(id(self))
            )
        self._eval_episode_return = 0
        obs = self._env.reset()
        obs = to_ndarray(obs).astype(np.float32)
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def render(self) -> None:
        self._env.render()

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        assert isinstance(action, np.ndarray), type(action)
        if action.shape == (1, ):
            action = action.squeeze()  # 0-dim array
        if self._act_scale:
            action = affine_transform(action, min_val=self.action_space.low, max_val=self.action_space.high)

        obs, rew, done, info = self._env.step(action)
        self._eval_episode_return += rew
        if self._rew_clip:
            rew = max(-10, rew)
        rew = np.float32(rew)

        if done:
            info['eval_episode_return'] = self._eval_episode_return
        obs = to_ndarray(obs).astype(np.float32)
        rew = to_ndarray([rew])  # wrapped to be transfered to a array with shape (1,)
        return BaseEnvTimestep(obs, rew, done, info)

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        if isinstance(random_action, np.ndarray):
            pass
        elif isinstance(random_action, int):
            random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def __repr__(self) -> str:
        return "DI-engine BipedalWalker Env"