File size: 4,679 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from typing import Any, List, Union, Optional
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY


@ENV_REGISTRY.register('mountain_car')
class MountainCarEnv(BaseEnv):
    """
    Implementation of DI-engine's version of the Mountain Car deterministic MDP. 

    Important references that contributed to the creation of this env:
    > Source code of OpenAI's mountain car gym : https://is.gd/y1FkMT
    > Gym documentation of mountain car : https://is.gd/29S0dt
    > Based off DI-engine existing implementation of cartpole_env.py
    > DI-engine's env creation conventions : https://is.gd/ZHLISj

    Only __init__ , step, seed and reset are mandatory & impt.
    The other methods are generally for convenience.
    """

    def __init__(self, cfg: EasyDict) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._replay_path = None

        # Following specifications from https://is.gd/29S0dt
        self._observation_space = gym.spaces.Box(
            low=np.array([-1.2, -0.07]), high=np.array([0.6, 0.07]), shape=(2, ), dtype=np.float32
        )
        self._action_space = gym.spaces.Discrete(3, start=0)
        self._reward_space = gym.spaces.Box(low=-1, high=0.0, shape=(1, ), dtype=np.float32)

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def reset(self) -> np.ndarray:
        # Instantiate environment if not already done so
        if not self._init_flag:
            self._env = gym.make('MountainCar-v0')
            self._init_flag = True

        # Check if we have a valid replay path and save replay video accordingly
        if self._replay_path is not None:
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix='rl-video-{}'.format(id(self))
            )

        # Set the seeds for randomization.
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
            self._action_space.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
            self._action_space.seed(self._seed)

        # Get first observation from original environment
        obs = self._env.reset()

        # Convert to numpy array as output
        obs = to_ndarray(obs).astype(np.float32)

        # Init final reward : cumulative sum of the real rewards obtained by a whole episode,
        # used to evaluate the agent Performance on this environment, not used for training.
        self._eval_episode_return = 0.
        return obs

    def step(self, action: np.ndarray) -> BaseEnvTimestep:

        # Making sure that input action is of numpy ndarray
        assert isinstance(action, np.ndarray), type(action)

        # Extract action as int, 0-dim array
        action = action.squeeze()

        # Take a step of faith into the unknown!
        obs, rew, done, info = self._env.step(action)

        # Cummulate reward
        self._eval_episode_return += rew

        # Save final cummulative reward when done.
        if done:
            info['eval_episode_return'] = self._eval_episode_return

        # Making sure we conform to di-engine conventions
        obs = to_ndarray(obs)
        rew = to_ndarray([rew]).astype(np.float32)

        return BaseEnvTimestep(obs, rew, done, info)

    def close(self) -> None:
        # If init flag is False, then reset() was never run, no point closing.
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def __repr__(self) -> str:
        return "DI-engine Mountain Car Env"