File size: 3,853 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import gym
import torch
from tensorboardX import SummaryWriter
from easydict import EasyDict
from functools import partial

from ding.config import compile_config
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer
from ding.envs import BaseEnvManager
from ding.envs import get_vec_env_setting, create_env_manager
from ding.policy import DDPGPolicy
from ding.utils import set_pkg_seed

cartpole_balance_ddpg_config = dict(
    exp_name='dmc2gym_cartpole_balance_ddpg_eval',
    env=dict(
        env_id='dmc2gym_cartpole_balance',
        domain_name='cartpole',
        task_name='balance',
        from_pixels=False,
        norm_obs=dict(use_norm=False, ),
        norm_reward=dict(use_norm=False, ),
        collector_env_num=1,
        evaluator_env_num=8,
        use_act_scale=True,
        n_evaluator_episode=8,
        replay_path='./dmc2gym_cartpole_balance_ddpg_eval/video',
        stop_value=1000,
    ),
    policy=dict(
        cuda=True,
        random_collect_size=2560,
        load_path="./dmc2gym_cartpole_balance_ddpg/ckpt/iteration_10000.pth.tar",
        model=dict(
            obs_shape=5,
            action_shape=1,
            twin_critic=False,
            actor_head_hidden_size=128,
            critic_head_hidden_size=128,
            action_space='regression',
        ),
        learn=dict(
            update_per_collect=1,
            batch_size=128,
            learning_rate_actor=1e-3,
            learning_rate_critic=1e-3,
            ignore_done=False,
            target_theta=0.005,
            discount_factor=0.99,
            actor_update_freq=1,
            noise=False,
        ),
        collect=dict(
            n_sample=1,
            unroll_len=1,
            noise_sigma=0.1,
        ),
        other=dict(replay_buffer=dict(replay_buffer_size=10000, ), ),
    )
)
cartpole_balance_ddpg_config = EasyDict(cartpole_balance_ddpg_config)
main_config = cartpole_balance_ddpg_config

cartpole_balance_create_config = dict(
    env=dict(
        type='dmc2gym',
        import_names=['dizoo.dmc2gym.envs.dmc2gym_env'],
    ),
    env_manager=dict(type='base'),
    policy=dict(
        type='ddpg',
        import_names=['ding.policy.ddpg'],
    ),
    replay_buffer=dict(type='naive', ),
)
cartpole_balance_create_config = EasyDict(cartpole_balance_create_config)
create_config = cartpole_balance_create_config


def main(cfg, create_cfg, seed=0):
    cfg = compile_config(
        cfg,
        BaseEnvManager,
        DDPGPolicy,
        BaseLearner,
        SampleSerialCollector,
        InteractionSerialEvaluator,
        AdvancedReplayBuffer,
        create_cfg=create_cfg,
        save_cfg=True
    )

    create_cfg.policy.type = create_cfg.policy.type + '_command'
    env_fn = None
    cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True)
    # Create main components: env, policy
    env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env)
    evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg])

    evaluator_env.enable_save_replay(cfg.env.replay_path)

    # Set random seed for all package and instance
    evaluator_env.seed(seed, dynamic_seed=False)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)

    # Set up RL Policy
    policy = DDPGPolicy(cfg.policy)
    policy.eval_mode.load_state_dict(torch.load(cfg.policy.load_path, map_location='cpu'))

    # evaluate
    tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
    evaluator = InteractionSerialEvaluator(
        cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
    )
    evaluator.eval()


if __name__ == "__main__":
    main(main_config, create_config, seed=0)