File size: 1,968 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from easydict import EasyDict
takeoffaviary_ppo_config = dict(
exp_name='takeoffaviary_ppo_seed0',
env=dict(
manager=dict(shared_memory=False, reset_inplace=True),
env_id='takeoff-aviary-v0',
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
collector_env_num=8,
evaluator_env_num=8,
use_act_scale=True,
n_evaluator_episode=8,
stop_value=0,
action_type="VEL",
),
policy=dict(
cuda=True,
recompute_adv=True,
# load_path="./takeoffaviary_ppo_seed0/ckpt/ckpt_best.pth.tar",
model=dict(
obs_shape=12,
action_shape=4,
action_space='continuous',
),
action_space='continuous',
learn=dict(
epoch_per_collect=10, #reduce
batch_size=64,
learning_rate=3e-4, #tune; pytorch lr scheduler
value_weight=0.5,
entropy_weight=0.0, #0.001
clip_ratio=0.2, #0.1
adv_norm=True,
value_norm=True,
),
collect=dict(
n_sample=2048,
gae_lambda=0.97,
),
eval=dict(evaluator=dict(eval_freq=5000, )),
),
)
takeoffaviary_ppo_config = EasyDict(takeoffaviary_ppo_config)
main_config = takeoffaviary_ppo_config
takeoffaviary_ppo_create_config = dict(
env=dict(
type='gym_pybullet_drones',
import_names=['dizoo.gym_pybullet_drones.envs.gym_pybullet_drones_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ppo', ),
)
takeoffaviary_ppo_create_config = EasyDict(takeoffaviary_ppo_create_config)
create_config = takeoffaviary_ppo_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_onpolicy -c takeoffaviary_ppo_config.py -s 0 --env-step 1e7`
from ding.entry import serial_pipeline_onpolicy
serial_pipeline_onpolicy((main_config, create_config), seed=0)
|