File size: 10,209 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import copy
import gym
import numpy as np
import torch
from tensorboardX import SummaryWriter
from easydict import EasyDict

from ding.config import compile_config
from ding.worker import BaseLearner, BattleInteractionSerialEvaluator, NaiveReplayBuffer
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.policy import PPOPolicy
from ding.model import VAC
from ding.utils import set_pkg_seed, Scheduler, deep_merge_dicts
from dizoo.league_demo.game_env import GameEnv
from dizoo.league_demo.demo_league import DemoLeague
from dizoo.league_demo.league_demo_collector import LeagueDemoCollector
from dizoo.league_demo.league_demo_ppo_config import league_demo_ppo_config


class EvalPolicy1:

    def __init__(self, optimal_policy: list) -> None:
        assert len(optimal_policy) == 2
        self.optimal_policy = optimal_policy

    def forward(self, data: dict) -> dict:
        return {
            env_id: {
                'action': torch.from_numpy(np.random.choice([0, 1], p=self.optimal_policy, size=(1, )))
            }
            for env_id in data.keys()
        }

    def reset(self, data_id: list = []) -> None:
        pass


class EvalPolicy2:

    def forward(self, data: dict) -> dict:
        return {
            env_id: {
                'action': torch.from_numpy(np.random.choice([0, 1], p=[0.5, 0.5], size=(1, )))
            }
            for env_id in data.keys()
        }

    def reset(self, data_id: list = []) -> None:
        pass


def main(cfg, seed=0, max_train_iter=int(1e8), max_env_step=int(1e8)):
    cfg = compile_config(
        cfg,
        BaseEnvManager,
        PPOPolicy,
        BaseLearner,
        LeagueDemoCollector,
        BattleInteractionSerialEvaluator,
        NaiveReplayBuffer,
        save_cfg=True
    )
    env_type = cfg.env.env_type
    collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
    evaluator_env1 = BaseEnvManager(
        env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
    )
    evaluator_env2 = BaseEnvManager(
        env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
    )
    evaluator_env3 = BaseEnvManager(
        env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
    )

    evaluator_env1.seed(seed, dynamic_seed=False)
    evaluator_env2.seed(seed, dynamic_seed=False)
    evaluator_env3.seed(seed, dynamic_seed=False)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)

    tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
    league = DemoLeague(cfg.policy.other.league)
    eval_policy1 = EvalPolicy1(evaluator_env1._env_ref.optimal_policy)
    eval_policy2 = EvalPolicy2()
    policies = {}
    learners = {}
    collectors = {}

    for player_id in league.active_players_ids:
        # default set the same arch model(different init weight)
        model = VAC(**cfg.policy.model)
        policy = PPOPolicy(cfg.policy, model=model)
        policies[player_id] = policy
        collector_env = BaseEnvManager(
            env_fn=[lambda: GameEnv(env_type) for _ in range(collector_env_num)], cfg=cfg.env.manager
        )
        collector_env.seed(seed)

        learners[player_id] = BaseLearner(
            cfg.policy.learn.learner,
            policy.learn_mode,
            tb_logger=tb_logger,
            exp_name=cfg.exp_name,
            instance_name=player_id + '_learner'
        )
        collectors[player_id] = LeagueDemoCollector(
            cfg.policy.collect.collector,
            collector_env,
            tb_logger=tb_logger,
            exp_name=cfg.exp_name,
            instance_name=player_id + '_collector',
        )

    model = VAC(**cfg.policy.model)
    policy = PPOPolicy(cfg.policy, model=model)
    policies['historical'] = policy
    # use initial policy as another eval_policy
    eval_policy3 = PPOPolicy(cfg.policy, model=copy.deepcopy(model)).collect_mode

    main_key = [k for k in learners.keys() if k.startswith('main_player')][0]
    main_player = league.get_player_by_id(main_key)
    main_learner = learners[main_key]
    main_collector = collectors[main_key]
    # collect_mode ppo use multinomial sample for selecting action
    evaluator1_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
    evaluator1_cfg.stop_value = cfg.env.stop_value[0]
    evaluator1 = BattleInteractionSerialEvaluator(
        evaluator1_cfg,
        evaluator_env1, [policies[main_key].collect_mode, eval_policy1],
        tb_logger,
        exp_name=cfg.exp_name,
        instance_name='fixed_evaluator'
    )
    evaluator2_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
    evaluator2_cfg.stop_value = cfg.env.stop_value[1]
    evaluator2 = BattleInteractionSerialEvaluator(
        evaluator2_cfg,
        evaluator_env2, [policies[main_key].collect_mode, eval_policy2],
        tb_logger,
        exp_name=cfg.exp_name,
        instance_name='uniform_evaluator'
    )
    evaluator3_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
    evaluator3_cfg.stop_value = 99999999  # stop_value of evaluator3 is a placeholder
    evaluator3 = BattleInteractionSerialEvaluator(
        evaluator3_cfg,
        evaluator_env3, [policies[main_key].collect_mode, eval_policy3],
        tb_logger,
        exp_name=cfg.exp_name,
        instance_name='init_evaluator'
    )

    def load_checkpoint_fn(player_id: str, ckpt_path: str):
        state_dict = torch.load(ckpt_path)
        policies[player_id].learn_mode.load_state_dict(state_dict)

    torch.save(policies['historical'].learn_mode.state_dict(), league.reset_checkpoint_path)
    league.load_checkpoint = load_checkpoint_fn
    # snapshot the initial player as the first historial player
    for player_id, player_ckpt_path in zip(league.active_players_ids, league.active_players_ckpts):
        torch.save(policies[player_id].collect_mode.state_dict(), player_ckpt_path)
        league.judge_snapshot(player_id, force=True)
    init_main_player_rating = league.metric_env.create_rating(mu=0)

    count = 0
    while True:
        if evaluator1.should_eval(main_learner.train_iter):
            stop_flag1, episode_info = evaluator1.eval(
                main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
            )
            win_loss_result = [e['result'] for e in episode_info[0]]
            # set fixed NE policy trueskill(exposure) equal 10
            main_player.rating = league.metric_env.rate_1vsC(
                main_player.rating, league.metric_env.create_rating(mu=10, sigma=1e-8), win_loss_result
            )

        if evaluator2.should_eval(main_learner.train_iter):
            stop_flag2, episode_info = evaluator2.eval(
                main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
            )
            win_loss_result = [e['result'] for e in episode_info[0]]
            # set random(uniform) policy trueskill(exposure) equal 0
            main_player.rating = league.metric_env.rate_1vsC(
                main_player.rating, league.metric_env.create_rating(mu=0, sigma=1e-8), win_loss_result
            )
        if evaluator3.should_eval(main_learner.train_iter):
            _, episode_info = evaluator3.eval(
                main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
            )
            win_loss_result = [e['result'] for e in episode_info[0]]
            # use init main player as another evaluator metric
            main_player.rating, init_main_player_rating = league.metric_env.rate_1vs1(
                main_player.rating, init_main_player_rating, win_loss_result
            )
            tb_logger.add_scalar(
                'league/init_main_player_trueskill', init_main_player_rating.exposure, main_collector.envstep
            )
        if stop_flag1 and stop_flag2:
            break

        for player_id, player_ckpt_path in zip(league.active_players_ids, league.active_players_ckpts):
            tb_logger.add_scalar(
                'league/{}_trueskill'.format(player_id),
                league.get_player_by_id(player_id).rating.exposure, main_collector.envstep
            )
            collector, learner = collectors[player_id], learners[player_id]
            job = league.get_job_info(player_id)
            opponent_player_id = job['player_id'][1]
            # print('job player: {}'.format(job['player_id']))
            if 'historical' in opponent_player_id:
                opponent_policy = policies['historical'].collect_mode
                opponent_path = job['checkpoint_path'][1]
                opponent_policy.load_state_dict(torch.load(opponent_path, map_location='cpu'))
            else:
                opponent_policy = policies[opponent_player_id].collect_mode
            collector.reset_policy([policies[player_id].collect_mode, opponent_policy])
            train_data, episode_info = collector.collect(train_iter=learner.train_iter)
            train_data, episode_info = train_data[0], episode_info[0]  # only use launch player data for training
            for d in train_data:
                d['adv'] = d['reward']

            for i in range(cfg.policy.learn.update_per_collect):
                learner.train(train_data, collector.envstep)
            torch.save(learner.policy.state_dict(), player_ckpt_path)

            player_info = learner.learn_info
            player_info['player_id'] = player_id
            league.update_active_player(player_info)
            league.judge_snapshot(player_id)
            # set eval_flag=True to enable trueskill update
            job_finish_info = {
                'eval_flag': True,
                'launch_player': job['launch_player'],
                'player_id': job['player_id'],
                'result': [e['result'] for e in episode_info],
            }
            league.finish_job(job_finish_info)

        if main_collector.envstep >= max_env_step or main_learner.train_iter >= max_train_iter:
            break
        if count % 100 == 0:
            print(repr(league.payoff))
        count += 1


if __name__ == "__main__":
    main(league_demo_ppo_config)