File size: 13,099 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from typing import List

import copy
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding

from ding.envs import BaseEnvTimestep
from ding.utils import ENV_REGISTRY


@ENV_REGISTRY.register('maze')
class Maze(gym.Env):
    """
        Environment with random maze layouts. The ASCII representation of the mazes include the following objects:
      - `<SPACE>`: empty
      - `x`: wall
      - `S`: the start location (optional)
      - `T`: the target location.
      """
    KEY_EMPTY = 0
    KEY_WALL = 1
    KEY_TARGET = 2
    KEY_START = 3
    ASCII_MAP = {
        KEY_EMPTY: ' ',
        KEY_WALL: 'x',
        KEY_TARGET: 'T',
        KEY_START: 'S',
    }

    def __init__(
        self,
        cfg,
    ):
        self._size = cfg.size
        self._init_flag = False
        self._random_start = True
        self._seed = None
        self._step = 0

    def reset(self):
        self.active_init()
        obs = self._get_obs()
        self._step = 0
        return self.process_states(obs, self.get_maze_map())

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def active_init(
        self,
        tabular_obs=False,
        reward_fn=lambda x, y, tx, ty: 1 if (x == tx and y == ty) else 0,
        done_fn=lambda x, y, tx, ty: x == tx and y == ty
    ):
        self._maze = self.generate_maze(self.size, self._seed, 'tunnel')
        self._num_maze_keys = len(Maze.ASCII_MAP.keys())
        nav_map = self.maze_to_ascii(self._maze)
        self._map = nav_map
        self._tabular_obs = tabular_obs
        self._reward_fn = reward_fn
        self._done_fn = done_fn
        if self._reward_fn is None:
            self._reward_fn = lambda x, y, tx, ty: float(x == tx and y == ty)
        if self._done_fn is None:
            self._done_fn = lambda x, y, tx, ty: False

        self._max_x = len(self._map)
        if not self._max_x:
            raise ValueError('Invalid map.')
        self._max_y = len(self._map[0])
        if not all(len(m) == self._max_y for m in self._map):
            raise ValueError('Invalid map.')
        self._start_x, self._start_y = self._find_initial_point()
        self._target_x, self._target_y = self._find_target_point()
        self._x, self._y = self._start_x, self._start_y

        self._n_state = self._max_x * self._max_y
        self._n_action = 4

        if self._tabular_obs:
            self.observation_space = spaces.Discrete(self._n_state)
        else:
            self.observation_space = spaces.Box(low=0.0, high=np.inf, shape=(16, 16, 3))

        self.action_space = spaces.Discrete(self._n_action)
        self.reward_space = spaces.Box(low=0, high=1, shape=(1, ), dtype=np.float32)

    def random_start(self):
        init_x, init_y = self._x, self._y
        while True:  # Find empty grid cell.
            self._x = self.np_random.integers(self._max_x)
            self._y = self.np_random.integers(self._max_y)
            if self._map[self._x][self._y] != 'x':
                break
        ret = copy.deepcopy(self.process_states(self._get_obs(), self.get_maze_map()))
        self._x, self._y = init_x, init_y
        return ret

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    @property
    def num_maze_keys(self):
        return self._num_maze_keys

    @property
    def size(self):
        return self._size

    def process_states(self, observations, maze_maps):
        """Returns [B, W, W, 3] binary values. Channels are (wall; goal; obs)"""
        loc = np.eye(self._size * self._size, dtype=np.int64)[observations[0] * self._size + observations[1]]
        loc = np.reshape(loc, [self._size, self._size])
        maze_maps = maze_maps.astype(np.int64)

        states = np.concatenate([maze_maps, loc[Ellipsis, None]], axis=-1, dtype=np.int64)
        return states

    def get_maze_map(self, stacked=True):
        if not stacked:
            return self._maze.copy()
        wall = self._maze.copy()
        target_x, target_y = self.target_location
        assert wall[target_x][target_y] == Maze.KEY_TARGET
        wall[target_x][target_y] = 0
        target = np.zeros((self._size, self._size))
        target[target_x][target_y] = 1
        assert wall[self._start_x][self._start_y] == Maze.KEY_START
        wall[self._start_x][self._start_y] = 0
        return np.stack([wall, target], axis=-1)

    def generate_maze(self, size, seed, wall_type):
        rng, _ = seeding.np_random(seed)
        maze = np.full((size, size), fill_value=Maze.KEY_EMPTY, dtype=int)

        if wall_type == 'none':
            maze[[0, -1], :] = Maze.KEY_WALL
            maze[:, [0, -1]] = Maze.KEY_WALL
        elif wall_type == 'tunnel':
            self.sample_wall(maze, rng)
        elif wall_type.startswith('blocks:'):
            maze[[0, -1], :] = Maze.KEY_WALL
            maze[:, [0, -1]] = Maze.KEY_WALL
            self.sample_blocks(maze, rng, int(wall_type.split(':')[-1]))
        else:
            raise ValueError('Unknown wall type: %s' % wall_type)

        loc_target = self.sample_location(maze, rng)
        maze[loc_target] = Maze.KEY_TARGET

        loc_start = self.sample_location(maze, rng)
        maze[loc_start] = Maze.KEY_START
        self._start_x, self._start_y = loc_start

        return maze

    def sample_blocks(self, maze, rng, num_blocks):
        """Sample single-block 'wall' or 'obstacles'."""
        for _ in range(num_blocks):
            loc = self.sample_location(maze, rng)
            maze[loc] = Maze.KEY_WALL

    def sample_wall(
        self, maze, rng, shortcut_prob=0.1, inner_wall_thickness=1, outer_wall_thickness=1, corridor_thickness=2
    ):
        room = maze

        # step 1: fill everything as wall
        room[:] = Maze.KEY_WALL

        # step 2: prepare
        # we move two pixels at a time, because the walls are also occupying pixels
        delta = inner_wall_thickness + corridor_thickness
        dx = [delta, -delta, 0, 0]
        dy = [0, 0, delta, -delta]

        def get_loc_type(y, x):
            # remember there is a outside wall of 1 pixel surrounding the room
            if (y < outer_wall_thickness or y + corridor_thickness - 1 >= room.shape[0] - outer_wall_thickness):
                return 'invalid'
            if (x < outer_wall_thickness or x + corridor_thickness - 1 >= room.shape[1] - outer_wall_thickness):
                return 'invalid'
            # already visited
            if room[y, x] == Maze.KEY_EMPTY:
                return 'occupied'
            return 'valid'

        def connect_pixel(y, x, ny, nx):
            pixel = Maze.KEY_EMPTY
            if ny == y:
                room[y:y + corridor_thickness, min(x, nx):max(x, nx) + corridor_thickness] = pixel
            else:
                room[min(y, ny):max(y, ny) + corridor_thickness, x:x + corridor_thickness] = pixel

        def carve_passage_from(y, x):
            room[y, x] = Maze.KEY_EMPTY
            for direction in rng.permutation(len(dx)):
                ny = y + dy[direction]
                nx = x + dx[direction]

                loc_type = get_loc_type(ny, nx)
                if loc_type == 'invalid':
                    continue
                elif loc_type == 'valid':
                    connect_pixel(y, x, ny, nx)
                    # recursion
                    carve_passage_from(ny, nx)
                else:
                    # occupied
                    # we create shortcut with some probability, this is because
                    # we do not want to restrict to only one feasible path.
                    if rng.random() < shortcut_prob:
                        connect_pixel(y, x, ny, nx)

        carve_passage_from(outer_wall_thickness, outer_wall_thickness)

    def sample_location(self, maze, rng):
        for _ in range(1000):
            x, y = rng.integers(low=1, high=self._size, size=2)
            if maze[x, y] == Maze.KEY_EMPTY:
                return x, y
        raise ValueError('Cannot sample empty location, make maze bigger?')

    @staticmethod
    def key_to_ascii(key):
        if key in Maze.ASCII_MAP:
            return Maze.ASCII_MAP[key]
        assert (Maze.KEY_OBJ <= key < Maze.KEY_OBJ + Maze.MAX_OBJ_TYPES)
        return chr(ord('1') + key - Maze.KEY_OBJ)

    def maze_to_ascii(self, maze):
        return [[Maze.key_to_ascii(x) for x in row] for row in maze]

    def tabular_obs_action(self, status_obs, action, include_maze_layout=False):
        tabular_obs = self.get_tabular_obs(status_obs)
        multiplier = self._n_action
        if include_maze_layout:
            multiplier += self._num_maze_keys
        return multiplier * tabular_obs + action

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = True
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = False
        return [cfg for _ in range(evaluator_env_num)]

    @property
    def nav_map(self):
        return self._map

    @property
    def n_state(self):
        return self._n_state

    @property
    def n_action(self):
        return self._n_action

    @property
    def target_location(self):
        return self._target_x, self._target_y

    @property
    def tabular_obs(self):
        return self._tabular_obs

    def _find_initial_point(self):
        for x in range(self._max_x):
            for y in range(self._max_y):
                if self._map[x][y] == 'S':
                    break
            if self._map[x][y] == 'S':
                break
        else:
            return None, None

        return x, y

    def _find_target_point(self):
        for x in range(self._max_x):
            for y in range(self._max_y):
                if self._map[x][y] == 'T':
                    break
            if self._map[x][y] == 'T':
                break
        else:
            raise ValueError('Target point not found in map.')

        return x, y

    def _get_obs(self):
        if self._tabular_obs:
            return self._x * self._max_y + self._y
        else:
            return np.array([self._x, self._y])

    def get_tabular_obs(self, status_obs):
        return self._max_y * status_obs[..., 0] + status_obs[..., 1]

    def get_xy(self, state):
        x = state / self._max_y
        y = state % self._max_y
        return x, y

    def step(self, action):
        last_x, last_y = self._x, self._y
        if action == 0:
            if self._x < self._max_x - 1:
                self._x += 1
        elif action == 1:
            if self._y < self._max_y - 1:
                self._y += 1
        elif action == 2:
            if self._x > 0:
                self._x -= 1
        elif action == 3:
            if self._y > 0:
                self._y -= 1

        if self._map[self._x][self._y] == 'x':
            self._x, self._y = last_x, last_y
        self._step += 1
        reward = self._reward_fn(self._x, self._y, self._target_x, self._target_y)
        done = self._done_fn(self._x, self._y, self._target_x, self._target_y)
        info = {}
        if self._step > 100:
            done = True
        if done:
            info['final_eval_reward'] = reward
            info['eval_episode_return'] = reward
        return BaseEnvTimestep(self.process_states(self._get_obs(), self.get_maze_map()), reward, done, info)


def get_value_map(env):
    """Returns [W, W, A] one-hot VI actions."""
    target_location = env.target_location
    nav_map = env.nav_map
    current_points = [target_location]
    chosen_actions = {target_location: 0}
    visited_points = {target_location: True}

    while current_points:
        next_points = []
        for point_x, point_y in current_points:
            for (action, (next_point_x, next_point_y)) in [(0, (point_x - 1, point_y)), (1, (point_x, point_y - 1)),
                                                           (2, (point_x + 1, point_y)), (3, (point_x, point_y + 1))]:

                if (next_point_x, next_point_y) in visited_points:
                    continue

                if not (0 <= next_point_x < len(nav_map) and 0 <= next_point_y < len(nav_map[next_point_x])):
                    continue

                if nav_map[next_point_x][next_point_y] == 'x':
                    continue

                next_points.append((next_point_x, next_point_y))
                visited_points[(next_point_x, next_point_y)] = True
                chosen_actions[(next_point_x, next_point_y)] = action
        current_points = next_points

    value_map = np.zeros([env.size, env.size, env.n_action])
    for (x, y), action in chosen_actions.items():
        value_map[x][y][action] = 1
    return value_map