File size: 15,662 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import copy
import gym
import numpy as np
from ditk import logging
from typing import Union, Dict, AnyStr, Tuple, Optional
from gym.envs.registration import register
from metadrive.manager.traffic_manager import TrafficMode
from metadrive.obs.top_down_obs_multi_channel import TopDownMultiChannel
from metadrive.constants import RENDER_MODE_NONE, DEFAULT_AGENT, REPLAY_DONE, TerminationState
from metadrive.envs.base_env import BaseEnv
from metadrive.component.map.base_map import BaseMap
from metadrive.component.map.pg_map import parse_map_config, MapGenerateMethod
from metadrive.component.pgblock.first_block import FirstPGBlock
from metadrive.component.vehicle.base_vehicle import BaseVehicle
from metadrive.utils import Config, merge_dicts, get_np_random, clip
from metadrive.envs.base_env import BASE_DEFAULT_CONFIG
from metadrive.component.road_network import Road
from metadrive.component.algorithm.blocks_prob_dist import PGBlockDistConfig

METADRIVE_DEFAULT_CONFIG = dict(
    # ===== Generalization =====
    start_seed=0,
    environment_num=10,
    decision_repeat=20,
    block_dist_config=PGBlockDistConfig,

    # ===== Map Config =====
    map=3,  # int or string: an easy way to fill map_config
    random_lane_width=False,
    random_lane_num=False,
    map_config={
        BaseMap.GENERATE_TYPE: MapGenerateMethod.BIG_BLOCK_NUM,
        BaseMap.GENERATE_CONFIG: None,  # it can be a file path / block num / block ID sequence
        BaseMap.LANE_WIDTH: 3.5,
        BaseMap.LANE_NUM: 3,
        "exit_length": 50,
    },

    # ===== Traffic =====
    traffic_density=0.1,
    need_inverse_traffic=False,
    traffic_mode=TrafficMode.Trigger,  # "Respawn", "Trigger"
    random_traffic=False,  # Traffic is randomized at default.
    traffic_vehicle_config=dict(
        show_navi_mark=False,
        show_dest_mark=False,
        enable_reverse=False,
        show_lidar=False,
        show_lane_line_detector=False,
        show_side_detector=False,
    ),

    # ===== Object =====
    accident_prob=0.,  # accident may happen on each block with this probability, except multi-exits block

    # ===== Others =====
    use_AI_protector=False,
    save_level=0.5,
    is_multi_agent=False,
    vehicle_config=dict(spawn_lane_index=(FirstPGBlock.NODE_1, FirstPGBlock.NODE_2, 0)),

    # ===== Agent =====
    random_spawn_lane_index=True,
    target_vehicle_configs={
        DEFAULT_AGENT: dict(
            use_special_color=True,
            spawn_lane_index=(FirstPGBlock.NODE_1, FirstPGBlock.NODE_2, 0),
        )
    },

    # ===== Reward Scheme =====
    # See: https://github.com/decisionforce/metadrive/issues/283
    success_reward=10.0,
    out_of_road_penalty=5.0,
    crash_vehicle_penalty=5.0,
    crash_object_penalty=5.0,
    driving_reward=1.0,
    speed_reward=0.1,
    use_lateral_reward=False,

    # ===== Cost Scheme =====
    crash_vehicle_cost=1.0,
    crash_object_cost=1.0,
    out_of_road_cost=1.0,

    # ===== Termination Scheme =====
    out_of_route_done=False,
    on_screen=False,
    show_bird_view=False,
)


class MetaDrivePPOOriginEnv(BaseEnv):

    @classmethod
    def default_config(cls) -> "Config":
        config = super(MetaDrivePPOOriginEnv, cls).default_config()
        config.update(METADRIVE_DEFAULT_CONFIG)
        config.register_type("map", str, int)
        config["map_config"].register_type("config", None)
        return config

    def __init__(self, config: dict = None):
        self.raw_cfg = config
        self.default_config_copy = Config(self.default_config(), unchangeable=True)
        self.init_flag = False

    @property
    def observation_space(self):
        return gym.spaces.Box(0, 1, shape=(84, 84, 5), dtype=np.float32)

    @property
    def action_space(self):
        return gym.spaces.Box(-1, 1, shape=(2, ), dtype=np.float32)

    @property
    def reward_space(self):
        return gym.spaces.Box(-100, 100, shape=(1, ), dtype=np.float32)

    def seed(self, seed, dynamic_seed=False):
        # TODO implement dynamic_seed mechanism
        super().seed(seed)

    def reset(self):
        if not self.init_flag:
            super(MetaDrivePPOOriginEnv, self).__init__(self.raw_cfg)
            self.start_seed = self.config["start_seed"]
            self.env_num = self.config["environment_num"]
            self.init_flag = True
        obs = super().reset()
        return obs

    def _merge_extra_config(self, config: Union[dict, "Config"]) -> "Config":
        config = self.default_config().update(config, allow_add_new_key=False)
        if config["vehicle_config"]["lidar"]["distance"] > 50:
            config["max_distance"] = config["vehicle_config"]["lidar"]["distance"]
        return config

    def _post_process_config(self, config):
        config = super(MetaDrivePPOOriginEnv, self)._post_process_config(config)
        if not config["rgb_clip"]:
            logging.warning(
                "You have set rgb_clip = False, which means the observation will be uint8 values in [0, 255]. "
                "Please make sure you have parsed them later before feeding them to network!"
            )
        config["map_config"] = parse_map_config(
            easy_map_config=config["map"], new_map_config=config["map_config"], default_config=self.default_config_copy
        )
        config["vehicle_config"]["rgb_clip"] = config["rgb_clip"]
        config["vehicle_config"]["random_agent_model"] = config["random_agent_model"]
        if config.get("gaussian_noise", 0) > 0:
            assert config["vehicle_config"]["lidar"]["gaussian_noise"] == 0, "You already provide config!"
            assert config["vehicle_config"]["side_detector"]["gaussian_noise"] == 0, "You already provide config!"
            assert config["vehicle_config"]["lane_line_detector"]["gaussian_noise"] == 0, "You already provide config!"
            config["vehicle_config"]["lidar"]["gaussian_noise"] = config["gaussian_noise"]
            config["vehicle_config"]["side_detector"]["gaussian_noise"] = config["gaussian_noise"]
            config["vehicle_config"]["lane_line_detector"]["gaussian_noise"] = config["gaussian_noise"]
        if config.get("dropout_prob", 0) > 0:
            assert config["vehicle_config"]["lidar"]["dropout_prob"] == 0, "You already provide config!"
            assert config["vehicle_config"]["side_detector"]["dropout_prob"] == 0, "You already provide config!"
            assert config["vehicle_config"]["lane_line_detector"]["dropout_prob"] == 0, "You already provide config!"
            config["vehicle_config"]["lidar"]["dropout_prob"] = config["dropout_prob"]
            config["vehicle_config"]["side_detector"]["dropout_prob"] = config["dropout_prob"]
            config["vehicle_config"]["lane_line_detector"]["dropout_prob"] = config["dropout_prob"]
        target_v_config = copy.deepcopy(config["vehicle_config"])
        if not config["is_multi_agent"]:
            target_v_config.update(config["target_vehicle_configs"][DEFAULT_AGENT])
            config["target_vehicle_configs"][DEFAULT_AGENT] = target_v_config
        return config

    def step(self, actions: Union[np.ndarray, Dict[AnyStr, np.ndarray]]):
        actions = self._preprocess_actions(actions)
        engine_info = self._step_simulator(actions)
        o, r, d, i = self._get_step_return(actions, engine_info=engine_info)
        return o, r, d, i

    def cost_function(self, vehicle_id: str):
        vehicle = self.vehicles[vehicle_id]
        step_info = dict()
        step_info["cost"] = 0
        if self._is_out_of_road(vehicle):
            step_info["cost"] = self.config["out_of_road_cost"]
        elif vehicle.crash_vehicle:
            step_info["cost"] = self.config["crash_vehicle_cost"]
        elif vehicle.crash_object:
            step_info["cost"] = self.config["crash_object_cost"]
        return step_info['cost'], step_info

    def _is_out_of_road(self, vehicle):
        ret = vehicle.on_yellow_continuous_line or vehicle.on_white_continuous_line or \
              (not vehicle.on_lane) or vehicle.crash_sidewalk
        if self.config["out_of_route_done"]:
            ret = ret or vehicle.out_of_route
        return ret

    def done_function(self, vehicle_id: str):
        vehicle = self.vehicles[vehicle_id]
        done = False
        done_info = {
            TerminationState.CRASH_VEHICLE: False,
            TerminationState.CRASH_OBJECT: False,
            TerminationState.CRASH_BUILDING: False,
            TerminationState.OUT_OF_ROAD: False,
            TerminationState.SUCCESS: False,
            TerminationState.MAX_STEP: False,
            TerminationState.ENV_SEED: self.current_seed,
        }
        if self._is_arrive_destination(vehicle):
            done = True
            logging.info("Episode ended! Reason: arrive_dest.")
            done_info[TerminationState.SUCCESS] = True
        if self._is_out_of_road(vehicle):
            done = True
            logging.info("Episode ended! Reason: out_of_road.")
            done_info[TerminationState.OUT_OF_ROAD] = True
        if vehicle.crash_vehicle:
            done = True
            logging.info("Episode ended! Reason: crash vehicle ")
            done_info[TerminationState.CRASH_VEHICLE] = True
        if vehicle.crash_object:
            done = True
            done_info[TerminationState.CRASH_OBJECT] = True
            logging.info("Episode ended! Reason: crash object ")
        if vehicle.crash_building:
            done = True
            done_info[TerminationState.CRASH_BUILDING] = True
            logging.info("Episode ended! Reason: crash building ")
        if self.config["max_step_per_agent"] is not None and \
                self.episode_lengths[vehicle_id] >= self.config["max_step_per_agent"]:
            done = True
            done_info[TerminationState.MAX_STEP] = True
            logging.info("Episode ended! Reason: max step ")

        if self.config["horizon"] is not None and \
                self.episode_lengths[vehicle_id] >= self.config["horizon"] and not self.is_multi_agent:
            # single agent horizon has the same meaning as max_step_per_agent
            done = True
            done_info[TerminationState.MAX_STEP] = True
            logging.info("Episode ended! Reason: max step ")

        done_info[TerminationState.CRASH] = (
            done_info[TerminationState.CRASH_VEHICLE] or done_info[TerminationState.CRASH_OBJECT]
            or done_info[TerminationState.CRASH_BUILDING]
        )
        return done, done_info

    def reward_function(self, vehicle_id: str):
        """
        Override this func to get a new reward function
        :param vehicle_id: id of BaseVehicle
        :return: reward
        """
        vehicle = self.vehicles[vehicle_id]
        step_info = dict()

        # Reward for moving forward in current lane
        if vehicle.lane in vehicle.navigation.current_ref_lanes:
            current_lane = vehicle.lane
            positive_road = 1
        else:
            current_lane = vehicle.navigation.current_ref_lanes[0]
            current_road = vehicle.navigation.current_road
            positive_road = 1 if not current_road.is_negative_road() else -1
        long_last, _ = current_lane.local_coordinates(vehicle.last_position)
        long_now, lateral_now = current_lane.local_coordinates(vehicle.position)

        # reward for lane keeping, without it vehicle can learn to overtake but fail to keep in lane
        if self.config["use_lateral_reward"]:
            lateral_factor = clip(1 - 2 * abs(lateral_now) / vehicle.navigation.get_current_lane_width(), 0.0, 1.0)
        else:
            lateral_factor = 1.0

        reward = 0.0
        reward += self.config["driving_reward"] * (long_now - long_last) * lateral_factor * positive_road
        reward += self.config["speed_reward"] * (vehicle.speed / vehicle.max_speed) * positive_road

        step_info["step_reward"] = reward

        if self._is_arrive_destination(vehicle):
            reward = +self.config["success_reward"]
        elif self._is_out_of_road(vehicle):
            reward = -self.config["out_of_road_penalty"]
        elif vehicle.crash_vehicle:
            reward = -self.config["crash_vehicle_penalty"]
        elif vehicle.crash_object:
            reward = -self.config["crash_object_penalty"]
        return reward, step_info

    def _get_reset_return(self):
        ret = {}
        self.engine.after_step()
        for v_id, v in self.vehicles.items():
            self.observations[v_id].reset(self, v)
            ret[v_id] = self.observations[v_id].observe(v)
        return ret if self.is_multi_agent else self._wrap_as_single_agent(ret)

    def switch_to_third_person_view(self) -> (str, BaseVehicle):
        if self.main_camera is None:
            return
        self.main_camera.reset()
        if self.config["prefer_track_agent"] is not None and self.config["prefer_track_agent"] in self.vehicles.keys():
            new_v = self.vehicles[self.config["prefer_track_agent"]]
            current_track_vehicle = new_v
        else:
            if self.main_camera.is_bird_view_camera():
                current_track_vehicle = self.current_track_vehicle
            else:
                vehicles = list(self.engine.agents.values())
                if len(vehicles) <= 1:
                    return
                if self.current_track_vehicle in vehicles:
                    vehicles.remove(self.current_track_vehicle)
                new_v = get_np_random().choice(vehicles)
                current_track_vehicle = new_v
        self.main_camera.track(current_track_vehicle)
        return

    def switch_to_top_down_view(self):
        self.main_camera.stop_track()

    def setup_engine(self):
        super(MetaDrivePPOOriginEnv, self).setup_engine()
        self.engine.accept("b", self.switch_to_top_down_view)
        self.engine.accept("q", self.switch_to_third_person_view)
        from metadrive.manager.traffic_manager import TrafficManager
        from metadrive.manager.map_manager import MapManager
        self.engine.register_manager("map_manager", MapManager())
        self.engine.register_manager("traffic_manager", TrafficManager())

    def _is_arrive_destination(self, vehicle):
        long, lat = vehicle.navigation.final_lane.local_coordinates(vehicle.position)
        flag = (vehicle.navigation.final_lane.length - 5 < long < vehicle.navigation.final_lane.length + 5) and (
            vehicle.navigation.get_current_lane_width() / 2 >= lat >=
            (0.5 - vehicle.navigation.get_current_lane_num()) * vehicle.navigation.get_current_lane_width()
        )
        return flag

    def _reset_global_seed(self, force_seed=None):
        """
        Current seed is set to force seed if force_seed is not None.
        Otherwise, current seed is randomly generated.
        """
        current_seed = force_seed if force_seed is not None else \
            get_np_random(self._DEBUG_RANDOM_SEED).randint(self.start_seed, self.start_seed + self.env_num)
        self.seed(current_seed)

    def _get_observations(self):
        return {DEFAULT_AGENT: self.get_single_observation(self.config["vehicle_config"])}

    def get_single_observation(self, _=None):
        return TopDownMultiChannel(
            self.config["vehicle_config"],
            self.config["on_screen"],
            self.config["rgb_clip"],
            frame_stack=3,
            post_stack=10,
            frame_skip=1,
            resolution=(84, 84),
            max_distance=36,
        )

    def clone(self, caller: str):
        cfg = copy.deepcopy(self.raw_cfg)
        return MetaDrivePPOOriginEnv(cfg)