File size: 2,000 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
from easydict import EasyDict
walker2d_d4pg_config = dict(
exp_name='walker2d_d4pg_seed0',
env=dict(
env_id='Walker2d-v3',
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
collector_env_num=4,
evaluator_env_num=4,
n_evaluator_episode=8,
stop_value=7000,
),
policy=dict(
cuda=True,
priority=True,
nstep=5,
random_collect_size=10000,
model=dict(
obs_shape=17,
action_shape=6,
actor_head_hidden_size=512,
critic_head_hidden_size=512,
action_space='regression',
critic_head_type='categorical',
v_min=0,
v_max=2000, # [1000, 4000]
n_atom=51,
),
learn=dict(
update_per_collect=3, # [1, 4]
batch_size=256,
learning_rate_actor=3e-4,
learning_rate_critic=3e-4,
ignore_done=False,
target_theta=0.005,
discount_factor=0.99,
actor_update_freq=1,
noise=False,
),
collect=dict(
n_sample=8,
unroll_len=1,
noise_sigma=0.2, # [0.1, 0.2]
),
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ),
)
)
walker2d_d4pg_config = EasyDict(walker2d_d4pg_config)
main_config = walker2d_d4pg_config
walker2d_d4pg_create_config = dict(
env=dict(
type='mujoco',
import_names=['dizoo.mujoco.envs.mujoco_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='d4pg',
import_names=['ding.policy.d4pg'],
),
)
walker2d_d4pg_create_config = EasyDict(walker2d_d4pg_create_config)
create_config = walker2d_d4pg_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c walker2d_d4pg_config.py -s 0`
from ding.entry import serial_pipeline
serial_pipeline([main_config, create_config], seed=0)
|