|
from easydict import EasyDict |
|
|
|
|
|
env_name = 'PongNoFrameskip-v4' |
|
|
|
if env_name == 'PongNoFrameskip-v4': |
|
action_space_size = 6 |
|
elif env_name == 'QbertNoFrameskip-v4': |
|
action_space_size = 6 |
|
elif env_name == 'MsPacmanNoFrameskip-v4': |
|
action_space_size = 9 |
|
elif env_name == 'SpaceInvadersNoFrameskip-v4': |
|
action_space_size = 6 |
|
elif env_name == 'BreakoutNoFrameskip-v4': |
|
action_space_size = 4 |
|
|
|
|
|
|
|
|
|
continuous_action_space = False |
|
K = 5 |
|
collector_env_num = 8 |
|
n_episode = 8 |
|
evaluator_env_num = 3 |
|
num_simulations = 50 |
|
update_per_collect = 1000 |
|
batch_size = 256 |
|
max_env_step = int(1e6) |
|
reanalyze_ratio = 0. |
|
|
|
|
|
|
|
|
|
atari_sampled_efficientzero_config = dict( |
|
exp_name= |
|
f'data_sez_ctree/{env_name[:-14]}_sampled_efficientzero_k{K}_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', |
|
env=dict( |
|
env_name=env_name, |
|
obs_shape=(4, 96, 96), |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
n_evaluator_episode=evaluator_env_num, |
|
manager=dict(shared_memory=False, ), |
|
), |
|
policy=dict( |
|
model=dict( |
|
observation_shape=(4, 96, 96), |
|
frame_stack_num=4, |
|
action_space_size=action_space_size, |
|
downsample=True, |
|
continuous_action_space=continuous_action_space, |
|
num_of_sampled_actions=K, |
|
discrete_action_encoding_type='one_hot', |
|
norm_type='BN', |
|
), |
|
cuda=True, |
|
env_type='not_board_games', |
|
game_segment_length=400, |
|
use_augmentation=True, |
|
update_per_collect=update_per_collect, |
|
batch_size=batch_size, |
|
optim_type='SGD', |
|
lr_piecewise_constant_decay=True, |
|
learning_rate=0.2, |
|
num_simulations=num_simulations, |
|
reanalyze_ratio=reanalyze_ratio, |
|
policy_loss_type='cross_entropy', |
|
n_episode=n_episode, |
|
eval_freq=int(2e3), |
|
replay_buffer_size=int(1e6), |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
), |
|
) |
|
atari_sampled_efficientzero_config = EasyDict(atari_sampled_efficientzero_config) |
|
main_config = atari_sampled_efficientzero_config |
|
|
|
atari_sampled_efficientzero_create_config = dict( |
|
env=dict( |
|
type='atari_lightzero', |
|
import_names=['zoo.atari.envs.atari_lightzero_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict( |
|
type='sampled_efficientzero', |
|
import_names=['lzero.policy.sampled_efficientzero'], |
|
), |
|
) |
|
atari_sampled_efficientzero_create_config = EasyDict(atari_sampled_efficientzero_create_config) |
|
create_config = atari_sampled_efficientzero_create_config |
|
|
|
if __name__ == "__main__": |
|
from lzero.entry import train_muzero |
|
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) |
|
|