gomoku / LightZero /zoo /atari /config /atari_sampled_efficientzero_config.py
zjowowen's picture
init space
079c32c
raw
history blame
3.46 kB
from easydict import EasyDict
# options={'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ...}
env_name = 'PongNoFrameskip-v4'
if env_name == 'PongNoFrameskip-v4':
action_space_size = 6
elif env_name == 'QbertNoFrameskip-v4':
action_space_size = 6
elif env_name == 'MsPacmanNoFrameskip-v4':
action_space_size = 9
elif env_name == 'SpaceInvadersNoFrameskip-v4':
action_space_size = 6
elif env_name == 'BreakoutNoFrameskip-v4':
action_space_size = 4
# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
continuous_action_space = False
K = 5 # num_of_sampled_actions
collector_env_num = 8
n_episode = 8
evaluator_env_num = 3
num_simulations = 50
update_per_collect = 1000
batch_size = 256
max_env_step = int(1e6)
reanalyze_ratio = 0.
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================
atari_sampled_efficientzero_config = dict(
exp_name=
f'data_sez_ctree/{env_name[:-14]}_sampled_efficientzero_k{K}_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0',
env=dict(
env_name=env_name,
obs_shape=(4, 96, 96),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(4, 96, 96),
frame_stack_num=4,
action_space_size=action_space_size,
downsample=True,
continuous_action_space=continuous_action_space,
num_of_sampled_actions=K,
discrete_action_encoding_type='one_hot',
norm_type='BN',
),
cuda=True,
env_type='not_board_games',
game_segment_length=400,
use_augmentation=True,
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='SGD',
lr_piecewise_constant_decay=True,
learning_rate=0.2,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
policy_loss_type='cross_entropy',
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions.
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
atari_sampled_efficientzero_config = EasyDict(atari_sampled_efficientzero_config)
main_config = atari_sampled_efficientzero_config
atari_sampled_efficientzero_create_config = dict(
env=dict(
type='atari_lightzero',
import_names=['zoo.atari.envs.atari_lightzero_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='sampled_efficientzero',
import_names=['lzero.policy.sampled_efficientzero'],
),
)
atari_sampled_efficientzero_create_config = EasyDict(atari_sampled_efficientzero_create_config)
create_config = atari_sampled_efficientzero_create_config
if __name__ == "__main__":
from lzero.entry import train_muzero
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)