zjowowen's picture
init space
079c32c
raw
history blame
6.9 kB
from abc import ABC, abstractmethod
from typing import Any, List, Tuple
import gym
import copy
from easydict import EasyDict
from collections import namedtuple
from ding.utils import import_module, ENV_REGISTRY
BaseEnvTimestep = namedtuple('BaseEnvTimestep', ['obs', 'reward', 'done', 'info'])
# for solving multiple inheritance metaclass conflict between gym and ABC
class FinalMeta(type(ABC), type(gym.Env)):
pass
class BaseEnv(gym.Env, ABC, metaclass=FinalMeta):
"""
Overview:
Basic environment class, extended from ``gym.Env``
Interface:
``__init__``, ``reset``, ``close``, ``step``, ``random_action``, ``create_collector_env_cfg``, \
``create_evaluator_env_cfg``, ``enable_save_replay``
"""
@abstractmethod
def __init__(self, cfg: dict) -> None:
"""
Overview:
Lazy init, only related arguments will be initialized in ``__init__`` method, and the concrete \
env will be initialized the first time ``reset`` method is called.
Arguments:
- cfg (:obj:`dict`): Environment configuration in dict type.
"""
raise NotImplementedError
@abstractmethod
def reset(self) -> Any:
"""
Overview:
Reset the env to an initial state and returns an initial observation.
Returns:
- obs (:obj:`Any`): Initial observation after reset.
"""
raise NotImplementedError
@abstractmethod
def close(self) -> None:
"""
Overview:
Close env and all the related resources, it should be called after the usage of env instance.
"""
raise NotImplementedError
@abstractmethod
def step(self, action: Any) -> 'BaseEnv.timestep':
"""
Overview:
Run one timestep of the environment's dynamics/simulation.
Arguments:
- action (:obj:`Any`): The ``action`` input to step with.
Returns:
- timestep (:obj:`BaseEnv.timestep`): The result timestep of env executing one step.
"""
raise NotImplementedError
@abstractmethod
def seed(self, seed: int) -> None:
"""
Overview:
Set the seed for this env's random number generator(s).
Arguments:
- seed (:obj:`Any`): Random seed.
"""
raise NotImplementedError
@abstractmethod
def __repr__(self) -> str:
"""
Overview:
Return the information string of this env instance.
Returns:
- info (:obj:`str`): Information of this env instance, like type and arguments.
"""
raise NotImplementedError
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
"""
Overview:
Return a list of all of the environment from input config, used in env manager \
(a series of vectorized env), and this method is mainly responsible for envs collecting data.
Arguments:
- cfg (:obj:`dict`): Original input env config, which needs to be transformed into the type of creating \
env instance actually and generated the corresponding number of configurations.
Returns:
- env_cfg_list (:obj:`List[dict]`): List of ``cfg`` including all the config collector envs.
.. note::
Elements(env config) in collector_env_cfg/evaluator_env_cfg can be different, such as server ip and port.
"""
collector_env_num = cfg.pop('collector_env_num')
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
"""
Overview:
Return a list of all of the environment from input config, used in env manager \
(a series of vectorized env), and this method is mainly responsible for envs evaluating performance.
Arguments:
- cfg (:obj:`dict`): Original input env config, which needs to be transformed into the type of creating \
env instance actually and generated the corresponding number of configurations.
Returns:
- env_cfg_list (:obj:`List[dict]`): List of ``cfg`` including all the config evaluator envs.
"""
evaluator_env_num = cfg.pop('evaluator_env_num')
return [cfg for _ in range(evaluator_env_num)]
# optional method
def enable_save_replay(self, replay_path: str) -> None:
"""
Overview:
Save replay file in the given path, and this method need to be self-implemented by each env class.
Arguments:
- replay_path (:obj:`str`): The path to save replay file.
"""
raise NotImplementedError
# optional method
def random_action(self) -> Any:
"""
Overview:
Return random action generated from the original action space, usually it is convenient for test.
Returns:
- random_action (:obj:`Any`): Action generated randomly.
"""
pass
def get_vec_env_setting(cfg: dict, collect: bool = True, eval_: bool = True) -> Tuple[type, List[dict], List[dict]]:
"""
Overview:
Get vectorized env setting (env_fn, collector_env_cfg, evaluator_env_cfg).
Arguments:
- cfg (:obj:`dict`): Original input env config in user config, such as ``cfg.env``.
Returns:
- env_fn (:obj:`type`): Callable object, call it with proper arguments and then get a new env instance.
- collector_env_cfg (:obj:`List[dict]`): A list contains the config of collecting data envs.
- evaluator_env_cfg (:obj:`List[dict]`): A list contains the config of evaluation envs.
.. note::
Elements (env config) in collector_env_cfg/evaluator_env_cfg can be different, such as server ip and port.
"""
import_module(cfg.get('import_names', []))
env_fn = ENV_REGISTRY.get(cfg.type)
collector_env_cfg = env_fn.create_collector_env_cfg(cfg) if collect else None
evaluator_env_cfg = env_fn.create_evaluator_env_cfg(cfg) if eval_ else None
return env_fn, collector_env_cfg, evaluator_env_cfg
def get_env_cls(cfg: EasyDict) -> type:
"""
Overview:
Get the env class by correspondng module of ``cfg`` and return the callable class.
Arguments:
- cfg (:obj:`dict`): Original input env config in user config, such as ``cfg.env``.
Returns:
- env_cls_type (:obj:`type`): Env module as the corresponding callable class type.
"""
import_module(cfg.get('import_names', []))
return ENV_REGISTRY.get(cfg.type)
def create_model_env(cfg: EasyDict) -> Any:
"""
Overview:
Create model env, which is used in model-based RL.
"""
cfg = copy.deepcopy(cfg)
model_env_fn = get_env_cls(cfg)
cfg.pop('import_names')
cfg.pop('type')
return model_env_fn(**cfg)