|
from typing import Any, Union |
|
import gym |
|
import numpy as np |
|
|
|
from ding.envs.env import BaseEnv, BaseEnvTimestep |
|
|
|
|
|
class DemoEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._closed = True |
|
|
|
self._observation_space = gym.spaces.Dict( |
|
{ |
|
"demo_dict": gym.spaces.Tuple( |
|
[ |
|
gym.spaces.Box(low=-10., high=10., shape=(4, ), dtype=np.float32), |
|
gym.spaces.Box(low=-100., high=100., shape=(1, ), dtype=np.float32) |
|
] |
|
) |
|
} |
|
) |
|
self._action_space = gym.spaces.Discrete(5) |
|
self._reward_space = gym.spaces.Box(low=0.0, high=1.0, shape=(1, ), dtype=np.float32) |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def reset(self) -> Any: |
|
""" |
|
Overview: |
|
Resets the env to an initial state and returns an initial observation. Abstract Method from ``gym.Env``. |
|
""" |
|
self._step_count = 0 |
|
self._env = "A real environment" |
|
self._closed = False |
|
return self.observation_space.sample() |
|
|
|
def close(self) -> None: |
|
self._closed = True |
|
|
|
def step(self, action: Any) -> 'BaseEnv.timestep': |
|
self._step_count += 1 |
|
obs = self.observation_space.sample() |
|
rew = self.reward_space.sample() |
|
if self._step_count == 30: |
|
self._step_count = 0 |
|
done = True |
|
else: |
|
done = False |
|
info = {} |
|
if done: |
|
info['eval_episode_return'] = self.reward_space.sample() * 30 |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def seed(self, seed: int) -> None: |
|
self._seed = seed |
|
|
|
def random_action(self) -> Union[np.ndarray, int]: |
|
return self.action_space.sample() |
|
|
|
def __repr__(self) -> str: |
|
return "Demo Env for env_implementation_test.py" |
|
|