zjowowen's picture
init space
079c32c
raw
history blame
6.15 kB
import time
import torch
import torch.nn.functional as F
from hpc_rll.origin.ppo import ppo_error, ppo_data
from hpc_rll.rl_utils.ppo import PPO
from testbase import mean_relative_error, times
assert torch.cuda.is_available()
use_cuda = True
B = 128
N = 128
clip_ratio = 0.2
use_value_clip = True
dual_clip = None
def ppo_val():
ori_logits_new = torch.randn(B, N)
ori_logits_old = torch.randn(B, N)
ori_action = torch.randint(0, N, size=(B, ))
ori_value_new = torch.randn(B)
ori_value_old = torch.randn(B)
ori_adv = torch.randn(B)
ori_return = torch.randn(B)
ori_weight = torch.randn(B)
hpc_logits_new = ori_logits_new.clone().detach()
hpc_logits_old = ori_logits_old.clone().detach()
hpc_action = ori_action.clone().detach()
hpc_value_new = ori_value_new.clone().detach()
hpc_value_old = ori_value_old.clone().detach()
hpc_adv = ori_adv.clone().detach()
hpc_return = ori_return.clone().detach()
hpc_weight = ori_weight.clone().detach()
hpc_ppo = PPO(B, N)
if use_cuda:
ori_logits_new = ori_logits_new.cuda()
ori_logits_old = ori_logits_old.cuda()
ori_action = ori_action.cuda()
ori_value_new = ori_value_new.cuda()
ori_value_old = ori_value_old.cuda()
ori_adv = ori_adv.cuda()
ori_return = ori_return.cuda()
ori_weight = ori_weight.cuda()
hpc_logits_new = hpc_logits_new.cuda()
hpc_logits_old = hpc_logits_old.cuda()
hpc_action = hpc_action.cuda()
hpc_value_new = hpc_value_new.cuda()
hpc_value_old = hpc_value_old.cuda()
hpc_adv = hpc_adv.cuda()
hpc_return = hpc_return.cuda()
hpc_weight = hpc_weight.cuda()
hpc_ppo = hpc_ppo.cuda()
ori_logits_new.requires_grad_(True)
ori_value_new.requires_grad_(True)
ori_loss, ori_info = ppo_error(
ppo_data(
ori_logits_new, ori_logits_old, ori_action, ori_value_new, ori_value_old, ori_adv, ori_return, ori_weight
), clip_ratio, use_value_clip, dual_clip
)
ori_loss = sum(ori_loss)
ori_loss.backward()
hpc_logits_new.requires_grad_(True)
hpc_value_new.requires_grad_(True)
hpc_loss, hpc_info = hpc_ppo(
hpc_logits_new, hpc_logits_old, hpc_action, hpc_value_new, hpc_value_old, hpc_adv, hpc_return, hpc_weight,
clip_ratio, use_value_clip, dual_clip
)
hpc_loss = sum(hpc_loss)
hpc_loss.backward()
print("ori_info: " + str(ori_info))
print("hpc_info: " + str(hpc_info))
mre = mean_relative_error(
torch.flatten(ori_loss).cpu().detach().numpy(),
torch.flatten(hpc_loss).cpu().detach().numpy()
)
print("ppo fp loss mean_relative_error: " + str(mre))
mre = mean_relative_error(
torch.flatten(ori_logits_new.grad).cpu().detach().numpy(),
torch.flatten(hpc_logits_new.grad).cpu().detach().numpy()
)
print("ppo bp logits_new mean_relative_error: " + str(mre))
mre = mean_relative_error(
torch.flatten(ori_value_new.grad).cpu().detach().numpy(),
torch.flatten(hpc_value_new.grad).cpu().detach().numpy()
)
print("ppo bp value_new mean_relative_error: " + str(mre))
def ppo_perf():
ori_logits_new = torch.randn(B, N)
ori_logits_old = torch.randn(B, N)
ori_action = torch.randint(0, N, size=(B, ))
ori_value_new = torch.randn(B)
ori_value_old = torch.randn(B)
ori_adv = torch.randn(B)
ori_return = torch.randn(B)
ori_weight = torch.randn(B)
hpc_logits_new = ori_logits_new.clone().detach()
hpc_logits_old = ori_logits_old.clone().detach()
hpc_action = ori_action.clone().detach()
hpc_value_new = ori_value_new.clone().detach()
hpc_value_old = ori_value_old.clone().detach()
hpc_adv = ori_adv.clone().detach()
hpc_return = ori_return.clone().detach()
hpc_weight = ori_weight.clone().detach()
hpc_ppo = PPO(B, N)
if use_cuda:
ori_logits_new = ori_logits_new.cuda()
ori_logits_old = ori_logits_old.cuda()
ori_action = ori_action.cuda()
ori_value_new = ori_value_new.cuda()
ori_value_old = ori_value_old.cuda()
ori_adv = ori_adv.cuda()
ori_return = ori_return.cuda()
ori_weight = ori_weight.cuda()
hpc_logits_new = hpc_logits_new.cuda()
hpc_logits_old = hpc_logits_old.cuda()
hpc_action = hpc_action.cuda()
hpc_value_new = hpc_value_new.cuda()
hpc_value_old = hpc_value_old.cuda()
hpc_adv = hpc_adv.cuda()
hpc_return = hpc_return.cuda()
hpc_weight = hpc_weight.cuda()
hpc_ppo = hpc_ppo.cuda()
ori_logits_new.requires_grad_(True)
ori_value_new.requires_grad_(True)
for i in range(times):
t = time.time()
ori_loss, ori_info = ppo_error(
ppo_data(
ori_logits_new, ori_logits_old, ori_action, ori_value_new, ori_value_old, ori_adv, ori_return,
ori_weight
), clip_ratio, use_value_clip, dual_clip
)
ori_loss = sum(ori_loss)
ori_loss.backward()
if use_cuda:
torch.cuda.synchronize()
print('epoch: {}, origin ppo cost time: {}'.format(i, time.time() - t))
hpc_logits_new.requires_grad_(True)
hpc_value_new.requires_grad_(True)
for i in range(times):
t = time.time()
hpc_loss, hpc_info = hpc_ppo(
hpc_logits_new, hpc_logits_old, hpc_action, hpc_value_new, hpc_value_old, hpc_adv, hpc_return, hpc_weight,
clip_ratio, use_value_clip, dual_clip
)
hpc_loss = sum(hpc_loss)
hpc_loss.backward()
if use_cuda:
torch.cuda.synchronize()
print('epoch: {}, hpc ppo cost time: {}'.format(i, time.time() - t))
if __name__ == '__main__':
print(
"target problem: B = {}, N = {}, clip_ratio = {}, use_value_clip = {}, dual_clip = {}".format(
B, N, clip_ratio, use_value_clip, dual_clip
)
)
print("================run ppo validation test================")
ppo_val()
print("================run ppo performance test================")
ppo_perf()