zjowowen's picture
init space
079c32c
raw
history blame
4.38 kB
import time
import torch
from hpc_rll.origin.upgo import upgo_loss
from hpc_rll.rl_utils.upgo import UPGO
from testbase import mean_relative_error, times
assert torch.cuda.is_available()
use_cuda = True
T = 256
B = 256
N = 256
def upgo_val():
ori_target_output = torch.randn(T, B, N)
ori_rhos = torch.randn(T, B)
ori_action = torch.randint(
0, N, size=(
T,
B,
)
)
ori_rewards = torch.randn(T, B)
ori_bootstrap_values = torch.randn(T + 1, B)
hpc_target_output = ori_target_output.clone().detach()
hpc_rhos = ori_rhos.clone().detach()
hpc_action = ori_action.clone().detach()
hpc_rewards = ori_rewards.clone().detach()
hpc_bootstrap_values = ori_bootstrap_values.clone().detach()
hpc_upgo = UPGO(T, B, N)
if use_cuda:
ori_target_output = ori_target_output.cuda()
ori_rhos = ori_rhos.cuda()
ori_action = ori_action.cuda()
ori_rewards = ori_rewards.cuda()
ori_bootstrap_values = ori_bootstrap_values.cuda()
hpc_target_output = hpc_target_output.cuda()
hpc_rhos = hpc_rhos.cuda()
hpc_action = hpc_action.cuda()
hpc_rewards = hpc_rewards.cuda()
hpc_bootstrap_values = hpc_bootstrap_values.cuda()
hpc_upgo = hpc_upgo.cuda()
ori_target_output.requires_grad_(True)
ori_loss = upgo_loss(ori_target_output, ori_rhos, ori_action, ori_rewards, ori_bootstrap_values)
ori_loss = ori_loss.mean()
ori_loss.backward()
if use_cuda:
torch.cuda.synchronize()
hpc_target_output.requires_grad_(True)
hpc_loss = hpc_upgo(hpc_target_output, hpc_rhos, hpc_action, hpc_rewards, hpc_bootstrap_values)
hpc_loss = hpc_loss.mean()
hpc_loss.backward()
if use_cuda:
torch.cuda.synchronize()
mre = mean_relative_error(
torch.flatten(ori_loss).cpu().detach().numpy(),
torch.flatten(hpc_loss).cpu().detach().numpy()
)
print("upgo fp mean_relative_error: " + str(mre))
mre = mean_relative_error(
torch.flatten(ori_target_output.grad).cpu().detach().numpy(),
torch.flatten(hpc_target_output.grad).cpu().detach().numpy()
)
print("upgo bp mean_relative_error: " + str(mre))
def upgo_perf():
ori_target_output = torch.randn(T, B, N)
ori_rhos = torch.randn(T, B)
ori_action = torch.randint(
0, N, size=(
T,
B,
)
)
ori_rewards = torch.randn(T, B)
ori_bootstrap_values = torch.randn(T + 1, B)
hpc_target_output = ori_target_output.clone().detach()
hpc_rhos = ori_rhos.clone().detach()
hpc_action = ori_action.clone().detach()
hpc_rewards = ori_rewards.clone().detach()
hpc_bootstrap_values = ori_bootstrap_values.clone().detach()
hpc_upgo = UPGO(T, B, N)
if use_cuda:
ori_target_output = ori_target_output.cuda()
ori_rhos = ori_rhos.cuda()
ori_action = ori_action.cuda()
ori_rewards = ori_rewards.cuda()
ori_bootstrap_values = ori_bootstrap_values.cuda()
hpc_target_output = hpc_target_output.cuda()
hpc_rhos = hpc_rhos.cuda()
hpc_action = hpc_action.cuda()
hpc_rewards = hpc_rewards.cuda()
hpc_bootstrap_values = hpc_bootstrap_values.cuda()
hpc_upgo = hpc_upgo.cuda()
ori_target_output.requires_grad_(True)
for i in range(times):
t = time.time()
ori_loss = upgo_loss(ori_target_output, ori_rhos, ori_action, ori_rewards, ori_bootstrap_values)
ori_loss = ori_loss.mean()
ori_loss.backward()
if use_cuda:
torch.cuda.synchronize()
print('epoch: {}, original upgo cost time: {}'.format(i, time.time() - t))
hpc_target_output.requires_grad_(True)
for i in range(times):
t = time.time()
hpc_loss = hpc_upgo(hpc_target_output, hpc_rhos, hpc_action, hpc_rewards, hpc_bootstrap_values)
hpc_loss = hpc_loss.mean()
hpc_loss.backward()
if use_cuda:
torch.cuda.synchronize()
print('epoch: {}, hpc upgo cost time: {}'.format(i, time.time() - t))
if __name__ == '__main__':
print("target problem: T = {}, B = {}, N = {}".format(T, B, N))
print("================run upgo validation test================")
upgo_val()
print("================run upgo performance test================")
upgo_perf()