|
from typing import List, Dict, Any, Tuple, Union |
|
from collections import namedtuple |
|
import torch |
|
import copy |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from .base_policy import Policy |
|
from .common_utils import default_preprocess_learn |
|
|
|
|
|
@POLICY_REGISTRY.register('ddpg') |
|
class DDPGPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of DDPG algorithm. Paper link: https://arxiv.org/abs/1509.02971. |
|
|
|
Config: |
|
== ==================== ======== ============= ================================= ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============= ================================= ======================= |
|
1 | ``type`` str ddpg | RL policy register name, refer | this arg is optional, |
|
| | to registry ``POLICY_REGISTRY`` | a placeholder |
|
2 | ``cuda`` bool False | Whether to use cuda for network | |
|
3 | ``random_`` int 25000 | Number of randomly collected | Default to 25000 for |
|
| ``collect_size`` | training samples in replay | DDPG/TD3, 10000 for |
|
| | buffer when training starts. | sac. |
|
4 | ``model.twin_`` bool False | Whether to use two critic | Default False for |
|
| ``critic`` | networks or only one. | DDPG, Clipped Double |
|
| | | Q-learning method in |
|
| | | TD3 paper. |
|
5 | ``learn.learning`` float 1e-3 | Learning rate for actor | |
|
| ``_rate_actor`` | network(aka. policy). | |
|
6 | ``learn.learning`` float 1e-3 | Learning rates for critic | |
|
| ``_rate_critic`` | network (aka. Q-network). | |
|
7 | ``learn.actor_`` int 2 | When critic network updates | Default 1 for DDPG, |
|
| ``update_freq`` | once, how many times will actor | 2 for TD3. Delayed |
|
| | network update. | Policy Updates method |
|
| | | in TD3 paper. |
|
8 | ``learn.noise`` bool False | Whether to add noise on target | Default False for |
|
| | network's action. | DDPG, True for TD3. |
|
| | | Target Policy Smoo- |
|
| | | thing Regularization |
|
| | | in TD3 paper. |
|
9 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only |
|
| ``ignore_done`` | done flag. | in halfcheetah env. |
|
10 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation |
|
| ``target_theta`` | target network. | factor in polyak aver- |
|
| | | aging for target |
|
| | | networks. |
|
11 | ``collect.-`` float 0.1 | Used for add noise during co- | Sample noise from dis- |
|
| ``noise_sigma`` | llection, through controlling | tribution, Ornstein- |
|
| | the sigma of distribution | Uhlenbeck process in |
|
| | | DDPG paper, Gaussian |
|
| | | process in ours. |
|
== ==================== ======== ============= ================================= ======================= |
|
""" |
|
|
|
config = dict( |
|
|
|
type='ddpg', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
|
|
random_collect_size=25000, |
|
|
|
transition_with_policy_data=False, |
|
|
|
action_space='continuous', |
|
|
|
reward_batch_norm=False, |
|
|
|
multi_agent=False, |
|
|
|
learn=dict( |
|
|
|
|
|
|
|
update_per_collect=1, |
|
|
|
batch_size=256, |
|
|
|
learning_rate_actor=1e-3, |
|
|
|
learning_rate_critic=1e-3, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ignore_done=False, |
|
|
|
|
|
|
|
target_theta=0.005, |
|
|
|
discount_factor=0.99, |
|
|
|
|
|
|
|
actor_update_freq=1, |
|
|
|
|
|
|
|
noise=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
|
|
|
|
unroll_len=1, |
|
|
|
noise_sigma=0.1, |
|
), |
|
eval=dict(), |
|
other=dict( |
|
replay_buffer=dict( |
|
|
|
replay_buffer_size=100000, |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
""" |
|
if self._cfg.multi_agent: |
|
return 'continuous_maqac', ['ding.model.template.maqac'] |
|
else: |
|
return 'continuous_qac', ['ding.model.template.qac'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For DDPG, it mainly \ |
|
contains two optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target model. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
|
|
self._optimizer_actor = Adam( |
|
self._model.actor.parameters(), |
|
lr=self._cfg.learn.learning_rate_actor, |
|
) |
|
self._optimizer_critic = Adam( |
|
self._model.critic.parameters(), |
|
lr=self._cfg.learn.learning_rate_critic, |
|
) |
|
self._reward_batch_norm = self._cfg.reward_batch_norm |
|
|
|
self._gamma = self._cfg.learn.discount_factor |
|
self._actor_update_freq = self._cfg.learn.actor_update_freq |
|
self._twin_critic = self._cfg.model.twin_critic |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
if self._cfg.action_space == 'hybrid': |
|
self._learn_model = model_wrap(self._learn_model, wrapper_name='hybrid_argmax_sample') |
|
self._target_model = model_wrap(self._target_model, wrapper_name='hybrid_argmax_sample') |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
if self._cfg.learn.noise: |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='action_noise', |
|
noise_type='gauss', |
|
noise_kwargs={ |
|
'mu': 0.0, |
|
'sigma': self._cfg.learn.noise_sigma |
|
}, |
|
noise_range=self._cfg.learn.noise_range |
|
) |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
self._forward_learn_cnt = 0 |
|
|
|
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, action, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For DDPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ |
|
and ``logit`` which is used for hybrid action space. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. |
|
""" |
|
loss_dict = {} |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._cfg.priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
next_obs = data['next_obs'] |
|
reward = data['reward'] |
|
if self._reward_batch_norm: |
|
reward = (reward - reward.mean()) / (reward.std() + 1e-8) |
|
|
|
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] |
|
|
|
|
|
with torch.no_grad(): |
|
next_actor_data = self._target_model.forward(next_obs, mode='compute_actor') |
|
next_actor_data['obs'] = next_obs |
|
target_q_value = self._target_model.forward(next_actor_data, mode='compute_critic')['q_value'] |
|
|
|
q_value_dict = {} |
|
target_q_value_dict = {} |
|
|
|
if self._twin_critic: |
|
|
|
target_q_value = torch.min(target_q_value[0], target_q_value[1]) |
|
q_value_dict['q_value'] = q_value[0].mean().data.item() |
|
q_value_dict['q_value_twin'] = q_value[1].mean().data.item() |
|
target_q_value_dict['target q_value'] = target_q_value.mean().data.item() |
|
|
|
td_data = v_1step_td_data(q_value[0], target_q_value, reward, data['done'], data['weight']) |
|
critic_loss, td_error_per_sample1 = v_1step_td_error(td_data, self._gamma) |
|
loss_dict['critic_loss'] = critic_loss |
|
|
|
td_data_twin = v_1step_td_data(q_value[1], target_q_value, reward, data['done'], data['weight']) |
|
critic_twin_loss, td_error_per_sample2 = v_1step_td_error(td_data_twin, self._gamma) |
|
loss_dict['critic_twin_loss'] = critic_twin_loss |
|
td_error_per_sample = (td_error_per_sample1 + td_error_per_sample2) / 2 |
|
else: |
|
|
|
q_value_dict['q_value'] = q_value.mean().data.item() |
|
target_q_value_dict['target q_value'] = target_q_value.mean().data.item() |
|
td_data = v_1step_td_data(q_value, target_q_value, reward, data['done'], data['weight']) |
|
critic_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma) |
|
loss_dict['critic_loss'] = critic_loss |
|
|
|
|
|
|
|
self._optimizer_critic.zero_grad() |
|
for k in loss_dict: |
|
if 'critic' in k: |
|
loss_dict[k].backward() |
|
self._optimizer_critic.step() |
|
|
|
|
|
|
|
|
|
if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0: |
|
actor_data = self._learn_model.forward(data['obs'], mode='compute_actor') |
|
actor_data['obs'] = data['obs'] |
|
if self._twin_critic: |
|
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'][0].mean() |
|
else: |
|
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean() |
|
|
|
loss_dict['actor_loss'] = actor_loss |
|
|
|
self._optimizer_actor.zero_grad() |
|
actor_loss.backward() |
|
self._optimizer_actor.step() |
|
|
|
|
|
|
|
loss_dict['total_loss'] = sum(loss_dict.values()) |
|
self._forward_learn_cnt += 1 |
|
self._target_model.update(self._learn_model.state_dict()) |
|
if self._cfg.action_space == 'hybrid': |
|
action_log_value = -1. |
|
else: |
|
action_log_value = data['action'].mean() |
|
return { |
|
'cur_lr_actor': self._optimizer_actor.defaults['lr'], |
|
'cur_lr_critic': self._optimizer_critic.defaults['lr'], |
|
|
|
'action': action_log_value, |
|
'priority': td_error_per_sample.abs().tolist(), |
|
'td_error': td_error_per_sample.abs().mean(), |
|
**loss_dict, |
|
**q_value_dict, |
|
**target_q_value_dict, |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model, target_model and optimizers. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer_actor': self._optimizer_actor.state_dict(), |
|
'optimizer_critic': self._optimizer_critic.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer_actor.load_state_dict(state_dict['optimizer_actor']) |
|
self._optimizer_critic.load_state_dict(state_dict['optimizer_critic']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For DDPG, it contains the \ |
|
collect_model to balance the exploration and exploitation with the perturbed noise mechanism, and other \ |
|
algorithm-specific arguments such as unroll_len. \ |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
|
|
self._collect_model = model_wrap( |
|
self._model, |
|
wrapper_name='action_noise', |
|
noise_type='gauss', |
|
noise_kwargs={ |
|
'mu': 0.0, |
|
'sigma': self._cfg.collect.noise_sigma |
|
}, |
|
noise_range=None |
|
) |
|
if self._cfg.action_space == 'hybrid': |
|
self._collect_model = model_wrap(self._collect_model, wrapper_name='hybrid_eps_greedy_multinomial_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ |
|
dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, mode='compute_actor', **kwargs) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], |
|
timestep: namedtuple) -> Dict[str, torch.Tensor]: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For DDPG, it contains obs, next_obs, action, reward, done. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. |
|
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ |
|
as input. For DDPG, it contains the action and the logit of the action (in hybrid action space). |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ |
|
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ |
|
reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'action': policy_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
if self._cfg.action_space == 'hybrid': |
|
transition['logit'] = policy_output['logit'] |
|
return transition |
|
|
|
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In DDPG, a train sample is a processed transition (unroll_len=1). |
|
Arguments: |
|
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ |
|
the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ |
|
as input transitions, but may contain more data for training. |
|
""" |
|
return get_train_sample(transitions, self._unroll_len) |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For DDPG, it contains the \ |
|
eval model to greedily select action type with argmax q_value mechanism for hybrid action space. \ |
|
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='base') |
|
if self._cfg.action_space == 'hybrid': |
|
self._eval_model = model_wrap(self._eval_model, wrapper_name='hybrid_argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
ret = [ |
|
'cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'q_value_twin', |
|
'action', 'td_error' |
|
] |
|
if self._twin_critic: |
|
ret += ['critic_twin_loss'] |
|
return ret |
|
|