zjowowen's picture
init space
079c32c
raw
history blame
30.1 kB
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('ddpg')
class DDPGPolicy(Policy):
"""
Overview:
Policy class of DDPG algorithm. Paper link: https://arxiv.org/abs/1509.02971.
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ================================= =======================
1 | ``type`` str ddpg | RL policy register name, refer | this arg is optional,
| | to registry ``POLICY_REGISTRY`` | a placeholder
2 | ``cuda`` bool False | Whether to use cuda for network |
3 | ``random_`` int 25000 | Number of randomly collected | Default to 25000 for
| ``collect_size`` | training samples in replay | DDPG/TD3, 10000 for
| | buffer when training starts. | sac.
4 | ``model.twin_`` bool False | Whether to use two critic | Default False for
| ``critic`` | networks or only one. | DDPG, Clipped Double
| | | Q-learning method in
| | | TD3 paper.
5 | ``learn.learning`` float 1e-3 | Learning rate for actor |
| ``_rate_actor`` | network(aka. policy). |
6 | ``learn.learning`` float 1e-3 | Learning rates for critic |
| ``_rate_critic`` | network (aka. Q-network). |
7 | ``learn.actor_`` int 2 | When critic network updates | Default 1 for DDPG,
| ``update_freq`` | once, how many times will actor | 2 for TD3. Delayed
| | network update. | Policy Updates method
| | | in TD3 paper.
8 | ``learn.noise`` bool False | Whether to add noise on target | Default False for
| | network's action. | DDPG, True for TD3.
| | | Target Policy Smoo-
| | | thing Regularization
| | | in TD3 paper.
9 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in halfcheetah env.
10 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver-
| | | aging for target
| | | networks.
11 | ``collect.-`` float 0.1 | Used for add noise during co- | Sample noise from dis-
| ``noise_sigma`` | llection, through controlling | tribution, Ornstein-
| | the sigma of distribution | Uhlenbeck process in
| | | DDPG paper, Gaussian
| | | process in ours.
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ddpg',
# (bool) Whether to use cuda in policy.
cuda=False,
# (bool) Whether learning policy is the same as collecting data policy(on-policy). Default False in DDPG.
on_policy=False,
# (bool) Whether to enable priority experience sample.
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
# Default 25000 in DDPG/TD3.
random_collect_size=25000,
# (bool) Whether to need policy data in process transition.
transition_with_policy_data=False,
# (str) Action space type, including ['continuous', 'hybrid'].
action_space='continuous',
# (bool) Whether use batch normalization for reward.
reward_batch_norm=False,
# (bool) Whether to enable multi-agent training setting.
multi_agent=False,
# learn_mode config
learn=dict(
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=256,
# (float) Learning rates for actor network(aka. policy).
learning_rate_actor=1e-3,
# (float) Learning rates for critic network(aka. Q-network).
learning_rate_critic=1e-3,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
# Default to 0.005.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (int) When critic network updates once, how many times will actor network update.
# Delayed Policy Updates in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf).
# Default 1 for DDPG, 2 for TD3.
actor_update_freq=1,
# (bool) Whether to add noise on target network's action.
# Target Policy Smoothing Regularization in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf).
# Default True for TD3, False for DDPG.
noise=False,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
# Only one of [n_sample, n_episode] shoule be set.
# n_sample=1,
# (int) Split episodes or trajectories into pieces with length `unroll_len`.
unroll_len=1,
# (float) It is a must to add noise during collection. So here omits "noise" and only set "noise_sigma".
noise_sigma=0.1,
),
eval=dict(), # for compability
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer. Usually, larger buffer size is better.
replay_buffer_size=100000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
if self._cfg.multi_agent:
return 'continuous_maqac', ['ding.model.template.maqac']
else:
return 'continuous_qac', ['ding.model.template.qac']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For DDPG, it mainly \
contains two optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target model.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
# actor and critic optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
self._reward_batch_norm = self._cfg.reward_batch_norm
self._gamma = self._cfg.learn.discount_factor
self._actor_update_freq = self._cfg.learn.actor_update_freq
self._twin_critic = self._cfg.model.twin_critic # True for TD3, False for DDPG
# main and target models
self._target_model = copy.deepcopy(self._model)
self._learn_model = model_wrap(self._model, wrapper_name='base')
if self._cfg.action_space == 'hybrid':
self._learn_model = model_wrap(self._learn_model, wrapper_name='hybrid_argmax_sample')
self._target_model = model_wrap(self._target_model, wrapper_name='hybrid_argmax_sample')
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
if self._cfg.learn.noise:
self._target_model = model_wrap(
self._target_model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.learn.noise_sigma
},
noise_range=self._cfg.learn.noise_range
)
self._learn_model.reset()
self._target_model.reset()
self._forward_learn_cnt = 0 # count iterations
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For DDPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
and ``logit`` which is used for hybrid action space.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._cfg.priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if self._cuda:
data = to_device(data, self._device)
# ====================
# critic learn forward
# ====================
self._learn_model.train()
self._target_model.train()
next_obs = data['next_obs']
reward = data['reward']
if self._reward_batch_norm:
reward = (reward - reward.mean()) / (reward.std() + 1e-8)
# current q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# target q value.
with torch.no_grad():
next_actor_data = self._target_model.forward(next_obs, mode='compute_actor')
next_actor_data['obs'] = next_obs
target_q_value = self._target_model.forward(next_actor_data, mode='compute_critic')['q_value']
q_value_dict = {}
target_q_value_dict = {}
if self._twin_critic:
# TD3: two critic networks
target_q_value = torch.min(target_q_value[0], target_q_value[1]) # find min one as target q value
q_value_dict['q_value'] = q_value[0].mean().data.item()
q_value_dict['q_value_twin'] = q_value[1].mean().data.item()
target_q_value_dict['target q_value'] = target_q_value.mean().data.item()
# critic network1
td_data = v_1step_td_data(q_value[0], target_q_value, reward, data['done'], data['weight'])
critic_loss, td_error_per_sample1 = v_1step_td_error(td_data, self._gamma)
loss_dict['critic_loss'] = critic_loss
# critic network2(twin network)
td_data_twin = v_1step_td_data(q_value[1], target_q_value, reward, data['done'], data['weight'])
critic_twin_loss, td_error_per_sample2 = v_1step_td_error(td_data_twin, self._gamma)
loss_dict['critic_twin_loss'] = critic_twin_loss
td_error_per_sample = (td_error_per_sample1 + td_error_per_sample2) / 2
else:
# DDPG: single critic network
q_value_dict['q_value'] = q_value.mean().data.item()
target_q_value_dict['target q_value'] = target_q_value.mean().data.item()
td_data = v_1step_td_data(q_value, target_q_value, reward, data['done'], data['weight'])
critic_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma)
loss_dict['critic_loss'] = critic_loss
# ================
# critic update
# ================
self._optimizer_critic.zero_grad()
for k in loss_dict:
if 'critic' in k:
loss_dict[k].backward()
self._optimizer_critic.step()
# ===============================
# actor learn forward and update
# ===============================
# actor updates every ``self._actor_update_freq`` iters
if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
actor_data = self._learn_model.forward(data['obs'], mode='compute_actor')
actor_data['obs'] = data['obs']
if self._twin_critic:
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'][0].mean()
else:
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean()
loss_dict['actor_loss'] = actor_loss
# actor update
self._optimizer_actor.zero_grad()
actor_loss.backward()
self._optimizer_actor.step()
# =============
# after update
# =============
loss_dict['total_loss'] = sum(loss_dict.values())
self._forward_learn_cnt += 1
self._target_model.update(self._learn_model.state_dict())
if self._cfg.action_space == 'hybrid':
action_log_value = -1. # TODO(nyz) better way to viz hybrid action
else:
action_log_value = data['action'].mean()
return {
'cur_lr_actor': self._optimizer_actor.defaults['lr'],
'cur_lr_critic': self._optimizer_critic.defaults['lr'],
# 'q_value': np.array(q_value).mean(),
'action': action_log_value,
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.abs().mean(),
**loss_dict,
**q_value_dict,
**target_q_value_dict,
}
def _state_dict_learn(self) -> Dict[str, Any]:
"""
Overview:
Return the state_dict of learn mode, usually including model, target_model and optimizers.
Returns:
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
"""
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer_actor': self._optimizer_actor.state_dict(),
'optimizer_critic': self._optimizer_critic.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_actor.load_state_dict(state_dict['optimizer_actor'])
self._optimizer_critic.load_state_dict(state_dict['optimizer_critic'])
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For DDPG, it contains the \
collect_model to balance the exploration and exploitation with the perturbed noise mechanism, and other \
algorithm-specific arguments such as unroll_len. \
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
"""
self._unroll_len = self._cfg.collect.unroll_len
# collect model
self._collect_model = model_wrap(
self._model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.collect.noise_sigma
},
noise_range=None
)
if self._cfg.action_space == 'hybrid':
self._collect_model = model_wrap(self._collect_model, wrapper_name='hybrid_eps_greedy_multinomial_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \
dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor', **kwargs)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For DDPG, it contains obs, next_obs, action, reward, done.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For DDPG, it contains the action and the logit of the action (in hybrid action space).
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
if self._cfg.action_space == 'hybrid':
transition['logit'] = policy_output['logit']
return transition
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. In DDPG, a train sample is a processed transition (unroll_len=1).
Arguments:
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training.
"""
return get_train_sample(transitions, self._unroll_len)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For DDPG, it contains the \
eval model to greedily select action type with argmax q_value mechanism for hybrid action space. \
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
self._eval_model = model_wrap(self._model, wrapper_name='base')
if self._cfg.action_space == 'hybrid':
self._eval_model = model_wrap(self._eval_model, wrapper_name='hybrid_argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DDPGPolicy: ``ding.policy.tests.test_ddpg``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
ret = [
'cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'q_value_twin',
'action', 'td_error'
]
if self._twin_critic:
ret += ['critic_twin_loss']
return ret