gomoku / DI-engine /ding /reward_model /rnd_reward_model.py
zjowowen's picture
init space
079c32c
raw
history blame
12.1 kB
from typing import Union, Tuple, List, Dict
from easydict import EasyDict
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY
from ding.model import FCEncoder, ConvEncoder
from .base_reward_model import BaseRewardModel
from ding.utils import RunningMeanStd
from ding.torch_utils.data_helper import to_tensor
import numpy as np
def collect_states(iterator):
res = []
for item in iterator:
state = item['obs']
res.append(state)
return res
class RndNetwork(nn.Module):
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None:
super(RndNetwork, self).__init__()
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.target = FCEncoder(obs_shape, hidden_size_list)
self.predictor = FCEncoder(obs_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.target = ConvEncoder(obs_shape, hidden_size_list)
self.predictor = ConvEncoder(obs_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
format(obs_shape)
)
for param in self.target.parameters():
param.requires_grad = False
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
predict_feature = self.predictor(obs)
with torch.no_grad():
target_feature = self.target(obs)
return predict_feature, target_feature
@REWARD_MODEL_REGISTRY.register('rnd')
class RndRewardModel(BaseRewardModel):
"""
Overview:
The RND reward model class (https://arxiv.org/abs/1810.12894v1)
Interface:
``estimate``, ``train``, ``collect_data``, ``clear_data``, \
``__init__``, ``_train``, ``load_state_dict``, ``state_dict``
Config:
== ==================== ===== ============= ======================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ===== ============= ======================================= =======================
1 ``type`` str rnd | Reward model register name, refer |
| to registry ``REWARD_MODEL_REGISTRY`` |
2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new
| ``reward_type`` | | , or assign
3 | ``learning_rate`` float 0.001 | The step size of gradient descent |
4 | ``batch_size`` int 64 | Training batch size |
5 | ``hidden`` list [64, 64, | the MLP layer shape |
| ``_size_list`` (int) 128] | |
6 | ``update_per_`` int 100 | Number of updates per collect |
| ``collect`` | |
7 | ``obs_norm`` bool True | Observation normalization |
8 | ``obs_norm_`` int 0 | min clip value for obs normalization |
| ``clamp_min``
9 | ``obs_norm_`` int 1 | max clip value for obs normalization |
| ``clamp_max``
10 | ``intrinsic_`` float 0.01 | the weight of intrinsic reward | r = w*r_i + r_e
``reward_weight``
11 | ``extrinsic_`` bool True | Whether to normlize extrinsic reward
``reward_norm``
12 | ``extrinsic_`` int 1 | the upper bound of the reward
``reward_norm_max`` | normalization
== ==================== ===== ============= ======================================= =======================
"""
config = dict(
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
type='rnd',
# (str) The intrinsic reward type, including add, new, or assign.
intrinsic_reward_type='add',
# (float) The step size of gradient descent.
learning_rate=1e-3,
# (float) Batch size.
batch_size=64,
# (list(int)) Sequence of ``hidden_size`` of reward network.
# If obs.shape == 1, use MLP layers.
# If obs.shape == 3, use conv layer and final dense layer.
hidden_size_list=[64, 64, 128],
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=100,
# (bool) Observation normalization: transform obs to mean 0, std 1.
obs_norm=True,
# (int) Min clip value for observation normalization.
obs_norm_clamp_min=-1,
# (int) Max clip value for observation normalization.
obs_norm_clamp_max=1,
# Means the relative weight of RND intrinsic_reward.
# (float) The weight of intrinsic reward
# r = intrinsic_reward_weight * r_i + r_e.
intrinsic_reward_weight=0.01,
# (bool) Whether to normlize extrinsic reward.
# Normalize the reward to [0, extrinsic_reward_norm_max].
extrinsic_reward_norm=True,
# (int) The upper bound of the reward normalization.
extrinsic_reward_norm_max=1,
)
def __init__(self, config: EasyDict, device: str = 'cpu', tb_logger: 'SummaryWriter' = None) -> None: # noqa
super(RndRewardModel, self).__init__()
self.cfg = config
assert device == "cpu" or device.startswith("cuda")
self.device = device
if tb_logger is None: # TODO
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter('rnd_reward_model')
self.tb_logger = tb_logger
self.reward_model = RndNetwork(config.obs_shape, config.hidden_size_list)
self.reward_model.to(self.device)
self.intrinsic_reward_type = config.intrinsic_reward_type
assert self.intrinsic_reward_type in ['add', 'new', 'assign']
self.train_obs = []
self.opt = optim.Adam(self.reward_model.predictor.parameters(), config.learning_rate)
self._running_mean_std_rnd_reward = RunningMeanStd(epsilon=1e-4)
self.estimate_cnt_rnd = 0
self.train_cnt_icm = 0
self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4)
def _train(self) -> None:
train_data: list = random.sample(self.train_obs, self.cfg.batch_size)
train_data: torch.Tensor = torch.stack(train_data).to(self.device)
if self.cfg.obs_norm:
# Note: observation normalization: transform obs to mean 0, std 1
self._running_mean_std_rnd_obs.update(train_data.cpu().numpy())
train_data = (train_data - to_tensor(self._running_mean_std_rnd_obs.mean).to(self.device)) / to_tensor(
self._running_mean_std_rnd_obs.std
).to(self.device)
train_data = torch.clamp(train_data, min=self.cfg.obs_norm_clamp_min, max=self.cfg.obs_norm_clamp_max)
predict_feature, target_feature = self.reward_model(train_data)
loss = F.mse_loss(predict_feature, target_feature.detach())
self.tb_logger.add_scalar('rnd_reward/loss', loss, self.train_cnt_icm)
self.opt.zero_grad()
loss.backward()
self.opt.step()
def train(self) -> None:
for _ in range(self.cfg.update_per_collect):
self._train()
self.train_cnt_icm += 1
def estimate(self, data: list) -> List[Dict]:
"""
Rewrite the reward key in each row of the data.
"""
# NOTE: deepcopy reward part of data is very important,
# otherwise the reward of data in the replay buffer will be incorrectly modified.
train_data_augmented = self.reward_deepcopy(data)
obs = collect_states(train_data_augmented)
obs = torch.stack(obs).to(self.device)
if self.cfg.obs_norm:
# Note: observation normalization: transform obs to mean 0, std 1
obs = (obs - to_tensor(self._running_mean_std_rnd_obs.mean
).to(self.device)) / to_tensor(self._running_mean_std_rnd_obs.std).to(self.device)
obs = torch.clamp(obs, min=self.cfg.obs_norm_clamp_min, max=self.cfg.obs_norm_clamp_max)
with torch.no_grad():
predict_feature, target_feature = self.reward_model(obs)
mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
self._running_mean_std_rnd_reward.update(mse.cpu().numpy())
# Note: according to the min-max normalization, transform rnd reward to [0,1]
rnd_reward = (mse - mse.min()) / (mse.max() - mse.min() + 1e-8)
# save the rnd_reward statistics into tb_logger
self.estimate_cnt_rnd += 1
self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_std', rnd_reward.std(), self.estimate_cnt_rnd)
rnd_reward = rnd_reward.to(self.device)
rnd_reward = torch.chunk(rnd_reward, rnd_reward.shape[0], dim=0)
"""
NOTE: Following normalization approach to extrinsic reward seems be not reasonable,
because this approach compresses the extrinsic reward magnitude, resulting in less informative reward signals.
"""
# rewards = torch.stack([data[i]['reward'] for i in range(len(data))])
# rewards = (rewards - torch.min(rewards)) / (torch.max(rewards) - torch.min(rewards))
for item, rnd_rew in zip(train_data_augmented, rnd_reward):
if self.intrinsic_reward_type == 'add':
if self.cfg.extrinsic_reward_norm:
item['reward'] = item[
'reward'] / self.cfg.extrinsic_reward_norm_max + rnd_rew * self.cfg.intrinsic_reward_weight
else:
item['reward'] = item['reward'] + rnd_rew * self.cfg.intrinsic_reward_weight
elif self.intrinsic_reward_type == 'new':
item['intrinsic_reward'] = rnd_rew
if self.cfg.extrinsic_reward_norm:
item['reward'] = item['reward'] / self.cfg.extrinsic_reward_norm_max
elif self.intrinsic_reward_type == 'assign':
item['reward'] = rnd_rew
# save the augmented_reward statistics into tb_logger
rew = [item['reward'].cpu().numpy() for item in train_data_augmented]
self.tb_logger.add_scalar('augmented_reward/reward_max', np.max(rew), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_mean', np.mean(rew), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_min', np.min(rew), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_std', np.std(rew), self.estimate_cnt_rnd)
return train_data_augmented
def collect_data(self, data: list) -> None:
self.train_obs.extend(collect_states(data))
def clear_data(self) -> None:
self.train_obs.clear()
def state_dict(self) -> Dict:
return self.reward_model.state_dict()
def load_state_dict(self, _state_dict: Dict) -> None:
self.reward_model.load_state_dict(_state_dict)