gomoku / DI-engine /ding /torch_utils /optimizer_helper.py
zjowowen's picture
init space
079c32c
raw
history blame
38 kB
import torch
import math
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
from typing import Union, Iterable, Tuple, Callable, List
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pdb
import numpy as np
import copy
import random
inf = math.inf
def calculate_grad_norm(model: torch.nn.Module, norm_type=2) -> float:
"""
Overview:
calculate grad norm of the parameters whose grad norms are not None in the model.
Arguments:
- model: torch.nn.Module
- norm_type (:obj:`int` or `inf`)
"""
parameters = list(filter(lambda p: p.grad is not None, model.parameters()))
if parameters == []:
parameters = 0
return 0
if norm_type == 'inf':
total_norm = max(p.grad.data.abs().max() for p in parameters)
return float(total_norm)
else:
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return float(total_norm)
def calculate_grad_norm_without_bias_two_norm(model: torch.nn.Module) -> float:
"""
Overview:
calculate grad norm of the parameters whose grad norms are not None in the model.
Arguments:
- model: torch.nn.Module
"""
_list = []
for name, param in model.named_parameters():
if 'bias' not in name and param.requires_grad:
if param.grad is None:
return 0
_list.append(param.grad.data.norm(2).item() ** 2)
return float(sum(_list) ** (1. / 2))
def grad_ignore_norm(parameters, max_norm, norm_type=2):
"""
Overview:
Clip the gradient norm of an iterable of parameters.
Arguments:
- parameters (:obj:`Iterable`): an iterable of torch.Tensor
- max_norm (:obj:`float`): the max norm of the gradients
- norm_type (:obj:`float`): 2.0 means use norm2 to clip
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
max_norm = float(max_norm)
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef < 1:
for p in parameters:
p.grad.zero_()
return total_norm
def grad_ignore_value(parameters, clip_value):
"""
Overview:
Clip the gradient value of an iterable of parameters.
Arguments:
- parameters (:obj:`Iterable`): an iterable of torch.Tensor
- clip_value (:obj:`float`): the value to start clipping
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
clip_value = float(clip_value)
flag = False
for p in filter(lambda p: p.grad is not None, parameters):
val = p.grad.data.abs().max()
if val >= clip_value:
flag = True
break
if flag:
for p in filter(lambda p: p.grad is not None, parameters):
p.grad.data.zero_()
class Adam(torch.optim.Adam):
"""
Overview:
Rewrited Adam optimizer to support more features.
Interfaces:
``__init__``, ``step``, ``_state_init``, ``get_grad``
"""
def __init__(
self,
params: Iterable,
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0,
amsgrad: bool = False,
optim_type: str = 'adam',
grad_clip_type: str = None,
clip_value: Union[float, None] = None,
clip_coef: float = 5,
clip_norm_type: float = 2.0,
clip_momentum_timestep: int = 100,
grad_norm_type: str = None,
grad_ignore_type: str = None,
ignore_value: Union[float, None] = None,
ignore_coef: float = 5,
ignore_norm_type: float = 2.0,
ignore_momentum_timestep: int = 100,
):
"""
Overview:
init method of refactored Adam class
Arguments:
- params (:obj:`iterable`): – an iterable of torch.Tensor s or dict s. \
Specifies what Tensors should be optimized
- lr (:obj:`float`): learning rate, default set to 1e-3
- betas (:obj:`Tuple[float, float]`): coefficients used for computing running averages of gradient and its\
square, default set to (0.9, 0.999))
- eps (:obj:`float`): term added to the denominator to improve numerical stability, default set to 1e-8
- weight_decay (:obj:`float`): weight decay coefficient, deault set to 0
- amsgrad (:obj:`bool`): whether to use the AMSGrad variant of this algorithm from the paper\
On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>
- optim_type (:obj:str): support ["adam", "adamw"]
- grad_clip_type (:obj:`str`): support [None, 'clip_momentum', 'clip_value', 'clip_norm', \
'clip_momentum_norm']
- clip_value (:obj:`float`): the value to start clipping
- clip_coef (:obj:`float`): the cliping coefficient
- clip_norm_type (:obj:`float`): 2.0 means use norm2 to clip
- clip_momentum_timestep (:obj:`int`): after how many step should we start the momentum clipping
- grad_ignore_type (:obj:`str`): support [None, 'ignore_momentum', 'ignore_value', 'ignore_norm', \
'ignore_momentum_norm']
- ignore_value (:obj:`float`): the value to start ignoring
- ignore_coef (:obj:`float`): the ignoreing coefficient
- ignore_norm_type (:obj:`float`): 2.0 means use norm2 to ignore
- ignore_momentum_timestep (:obj:`int`): after how many step should we start the momentum ignoring
"""
self._support_type = {
'optim': ['adam', 'adamw'],
'grad_clip': [None, 'clip_momentum', 'clip_value', 'clip_norm', 'clip_momentum_norm'],
'grad_norm': [None],
'grad_ignore': [None, 'ignore_momentum', 'ignore_value', 'ignore_norm', 'ignore_momentum_norm'],
}
assert optim_type in self._support_type['optim']
assert grad_clip_type in self._support_type['grad_clip']
assert grad_norm_type in self._support_type['grad_norm']
assert grad_ignore_type in self._support_type['grad_ignore']
if grad_clip_type:
assert clip_value is not None
if grad_ignore_type:
assert ignore_value is not None
self._optim_type = optim_type
self._grad_clip_type = grad_clip_type
self._grad_norm_type = grad_norm_type
self._grad_ignore_type = grad_ignore_type
self._clip_value = clip_value
self._clip_norm_type = clip_norm_type
self._clip_coef = clip_coef
self._ignore_value = ignore_value
self._ignore_norm_type = ignore_norm_type
self._ignore_coef = ignore_coef
self._clip_momentum_timestep = clip_momentum_timestep
self._ignore_momentum_timestep = ignore_momentum_timestep
if self._optim_type == 'adamw':
self._weight_decay = weight_decay
super(Adam, self).__init__(params, lr=lr, betas=betas, eps=eps, weight_decay=0, amsgrad=amsgrad)
elif self._optim_type == 'adam':
super(Adam, self).__init__(params, lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad)
else:
raise NotImplementedError(
"optimizer type {} is not implemented, support type is {}".format(
self._optim_type, self._support_type['optim']
)
)
def _state_init(self, p, amsgrad):
"""
Overview:
Initialize the state of the optimizer
Arguments:
- p (:obj:`torch.Tensor`): the parameter to be optimized
- amsgrad (:obj:`bool`): whether to use the AMSGrad variant of this algorithm from the paper\
On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>
"""
state = self.state[p]
state['thre_exp_avg_sq'] = torch.zeros_like(p.data, device=p.data.device)
# others
if torch.__version__ < "1.12.0":
state['step'] = 0
# TODO
# wait torch upgrad to 1.4, 1.3.1 didn't support memory format state['step'] = 0
else:
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \
if self.defaults['capturable'] else torch.tensor(0.)
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
def step(self, closure: Union[Callable, None] = None):
"""
Overview:
Performs a single optimization step
Arguments:
- closure (:obj:`callable`): A closure that reevaluates the model and returns the loss, default set to None
"""
# clipping
new_params = [
t for group in self.param_groups for t in group['params'] if t.requires_grad and t.grad is not None
]
if self._grad_clip_type == 'clip_value':
clip_grad_value_(new_params, self._clip_value)
elif self._grad_clip_type == 'clip_norm':
clip_grad_norm_(new_params, self._clip_value, self._clip_norm_type)
elif self._grad_clip_type == 'clip_momentum':
'''
This is the implimentation mimic the clip used in OPENAI, quote:
'Gradients are additionally clipped per parameter to be within between ±5√v
where v is the running estimate of the second moment of the (unclipped) gradient'
'''
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['amsgrad'])
grad = p.grad.data
# should we use same beta group?
beta1, beta2 = group['betas']
bias_correction2 = 1 - beta2 ** state['step']
state['thre_exp_avg_sq'].mul_(beta2).addcmul_(1 - beta2, grad, grad)
if state['step'] >= self._clip_momentum_timestep: # initial value is inaccurate
flag = grad.abs(
) > (state['thre_exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)) * self._clip_coef
grad.mul_(~flag).add_(
((state['thre_exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)) *
self._clip_coef).mul_(flag)
)
elif self._grad_clip_type == 'clip_momentum_norm':
# might have multi param_group, we should calculate each group differently.
for group in self.param_groups:
total_norm = 0
total_momentum_norm = 0
step = inf
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['amsgrad'])
grad = p.grad.data
# should we use same beta group?
beta1, beta2 = group['betas']
bias_correction2 = 1 - beta2 ** state['step']
state['thre_exp_avg_sq'].mul_(beta2).addcmul_(1 - beta2, grad, grad)
# sum total_norm
param_norm = grad.norm(self._clip_norm_type)
total_norm += param_norm.item() ** self._clip_norm_type
# sum momentum_norm
momentum = ((state['thre_exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)) *
self._clip_coef).norm(self._clip_norm_type)
total_momentum_norm += momentum.item() ** self._clip_norm_type
step = min(step, state['step'])
if step > self._clip_momentum_timestep:
total_norm = total_norm ** (1. / self._clip_norm_type)
total_momentum_norm = total_momentum_norm ** (1. / self._clip_norm_type)
clip_coef = total_momentum_norm / (total_norm + 1e-6)
if clip_coef < 1:
for p in group['params']:
p.grad.data.mul_(clip_coef)
if self._grad_ignore_type == 'ignore_value':
grad_ignore_value(new_params, self._ignore_value)
elif self._grad_ignore_type == 'ignore_norm':
grad_ignore_norm(new_params, self._ignore_value, self._ignore_norm_type)
elif self._grad_ignore_type == 'ignore_momentum':
flag = False
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['amsgrad'])
grad = p.grad.data
# should we use same beta group?
beta1, beta2 = group['betas']
bias_correction2 = 1 - beta2 ** state['step']
state['thre_exp_avg_sq'].mul_(beta2).addcmul_(1 - beta2, grad, grad)
if state['step'] >= self._ignore_momentum_timestep: # initial value is inaccurate
if grad.abs() > (state['thre_exp_avg_sq'].sqrt() /
math.sqrt(bias_correction2)) * self._ignore_coef:
flag = True
break
else:
continue
break
if flag:
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
p.grad.zero_()
elif self._grad_ignore_type == 'ignore_momentum_norm':
# might have multi param_group, we should calculate each group differently.
step = inf
for group in self.param_groups:
total_norm = 0
total_momentum_norm = 0
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['amsgrad'])
grad = p.grad.data
# should we use same beta group?
beta1, beta2 = group['betas']
bias_correction2 = 1 - beta2 ** state['step']
state['thre_exp_avg_sq'].mul_(beta2).addcmul_(1 - beta2, grad, grad)
# sum total_norm
param_norm = grad.norm(self._ignore_norm_type)
total_norm += param_norm.item() ** self._ignore_norm_type
# sum momentum_norm
momentum = ((state['thre_exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)) *
self._ignore_coef).norm(self._ignore_norm_type)
total_momentum_norm += momentum.item() ** self._ignore_norm_type
step = min(step, state['step'])
if step > self._ignore_momentum_timestep:
total_norm = total_norm ** (1. / self._ignore_norm_type)
total_momentum_norm = total_momentum_norm ** (1. / self._ignore_norm_type)
ignore_coef = total_momentum_norm / (total_norm + 1e-6)
if ignore_coef < 1:
for p in group['params']:
p.grad.zero_()
# Adam optim type
if self._optim_type == 'adamw':
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
p.data = p.data.add(-self._weight_decay * group['lr'], p.data)
return super().step(closure=closure)
elif self._optim_type == 'adam':
return super().step(closure=closure)
def get_grad(self) -> float:
total_norm = 0.
params = [t for group in self.param_groups for t in group['params'] if t.requires_grad and t.grad is not None]
for p in params:
param_norm = p.grad.data.norm(self._clip_norm_type)
total_norm += param_norm.item() ** self._clip_norm_type
return total_norm
class RMSprop(torch.optim.RMSprop):
r"""
Overview:
Rewrited RMSprop optimizer to support more features.
Interfaces:
``__init__``, ``step``, ``_state_init``, ``get_grad``
"""
def __init__(
self,
params: Iterable,
lr: float = 1e-2,
alpha: float = 0.99,
eps: float = 1e-8,
weight_decay: float = 0,
momentum: float = 0,
centered: bool = False,
grad_clip_type: str = None,
clip_value: Union[float, None] = None,
clip_coef: float = 5,
clip_norm_type: float = 2.0,
clip_momentum_timestep: int = 100,
grad_norm_type: str = None,
grad_ignore_type: str = None,
ignore_value: Union[float, None] = None,
ignore_coef: float = 5,
ignore_norm_type: float = 2.0,
ignore_momentum_timestep: int = 100,
):
"""
Overview:
init method of refactored Adam class
Arguments:
- params (:obj:`iterable`): – an iterable of torch.Tensor s or dict s. \
Specifies what Tensors should be optimized
- lr (:obj:`float`): learning rate, default set to 1e-3
- alpha (:obj:`float`): smoothing constant, default set to 0.99
- eps (:obj:`float`): term added to the denominator to improve numerical stability, default set to 1e-8
- weight_decay (:obj:`float`): weight decay coefficient, deault set to 0
- centred (:obj:`bool`): if True, compute the centered RMSprop, \
the gradient is normalized by an estimation of its variance
- grad_clip_type (:obj:`str`): support [None, 'clip_momentum', 'clip_value', 'clip_norm', \
'clip_momentum_norm']
- clip_value (:obj:`float`): the value to start clipping
- clip_coef (:obj:`float`): the cliping coefficient
- clip_norm_type (:obj:`float`): 2.0 means use norm2 to clip
- clip_momentum_timestep (:obj:`int`): after how many step should we start the momentum clipping
- grad_ignore_type (:obj:`str`): support [None, 'ignore_momentum', 'ignore_value', 'ignore_norm', \
'ignore_momentum_norm']
- ignore_value (:obj:`float`): the value to start ignoring
- ignore_coef (:obj:`float`): the ignoreing coefficient
- ignore_norm_type (:obj:`float`): 2.0 means use norm2 to ignore
- ignore_momentum_timestep (:obj:`int`): after how many step should we start the momentum ignoring
"""
self._support_type = {
'grad_clip': [None, 'clip_momentum', 'clip_value', 'clip_norm', 'clip_momentum_norm'],
'grad_norm': [None],
'grad_ignore': [None, 'ignore_momentum', 'ignore_value', 'ignore_norm', 'ignore_momentum_norm'],
}
assert grad_clip_type in self._support_type['grad_clip']
assert grad_norm_type in self._support_type['grad_norm']
assert grad_ignore_type in self._support_type['grad_ignore']
if grad_clip_type:
assert clip_value is not None
if grad_ignore_type:
assert ignore_value is not None
self._grad_clip_type = grad_clip_type
self._grad_norm_type = grad_norm_type
self._grad_ignore_type = grad_ignore_type
self._clip_value = clip_value
self._clip_norm_type = clip_norm_type
self._clip_coef = clip_coef
self._ignore_value = ignore_value
self._ignore_norm_type = ignore_norm_type
self._ignore_coef = ignore_coef
self._clip_momentum_timestep = clip_momentum_timestep
self._ignore_momentum_timestep = ignore_momentum_timestep
super(RMSprop, self).__init__(
params, lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=centered
)
def _state_init(self, p, momentum, centered):
"""
Overview:
Initialize the state of the optimizer
Arguments:
- p (:obj:`torch.Tensor`): the parameter to be optimized
- momentum (:obj:`float`): the momentum coefficient
- centered (:obj:`bool`): if True, compute the centered RMSprop, \
the gradient is normalized by an estimation of its variance
"""
state = self.state[p]
state['step'] = 0
state['thre_square_avg'] = torch.zeros_like(p.data, device=p.data.device)
state['square_avg'] = torch.zeros_like(p.data, device=p.data.device)
if momentum:
state['momentum_buffer'] = torch.zeros_like(p.data, device=p.data.device)
if centered:
state['grad_avg'] = torch.zeros_like(p.data, device=p.data.device)
def step(self, closure: Union[Callable, None] = None):
"""
Overview:
Performs a single optimization step
Arguments:
- closure (:obj:`callable`): A closure that reevaluates the model and returns the loss, default set to None
"""
# clipping
new_params = [
t for group in self.param_groups for t in group['params'] if t.requires_grad and t.grad is not None
]
if self._grad_clip_type == 'clip_value':
clip_grad_value_(new_params, self._clip_value)
elif self._grad_clip_type == 'clip_norm':
clip_grad_norm_(new_params, self._clip_value, self._clip_norm_type)
elif self._grad_clip_type == 'clip_momentum':
'''
This implementation mimics the clip used in OPENAI, quote:
'Gradients are additionally clipped per parameter to be within between ±5√v
where v is the running estimate of the second moment of the (unclipped) gradient'
'''
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['momentum'], group['centered'])
grad = p.grad.data
# beta1, beta2 = group['betas']
alpha = group['alpha']
state['thre_square_avg'].mul_(alpha).addcmul_(1 - alpha, grad, grad)
if state['step'] >= self._clip_momentum_timestep: # initial value is inaccurate
flag = grad.abs() > state['thre_square_avg'].sqrt() * self._clip_coef
grad.mul_(~flag).add_((state['thre_square_avg'].sqrt() * self._clip_coef).mul_(flag))
elif self._grad_clip_type == 'clip_momentum_norm':
# might have multi param_group, we should calculate each group differently.
for group in self.param_groups:
total_norm = 0
total_momentum_norm = 0
step = inf
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['momentum'], group['centered'])
grad = p.grad.data
alpha = group['alpha']
state['thre_square_avg'].mul_(alpha).addcmul_(1 - alpha, grad, grad)
# sum total_norm
param_norm = grad.norm(self._clip_norm_type)
total_norm += param_norm.item() ** self._clip_norm_type
# sum momentum_norm
momentum = (state['thre_square_avg'].sqrt() * self._clip_coef).norm(self._clip_norm_type)
total_momentum_norm += momentum.item() ** self._clip_norm_type
step = min(step, state['step'])
if step > self._clip_momentum_timestep:
total_norm = total_norm ** (1. / self._clip_norm_type)
total_momentum_norm = total_momentum_norm ** (1. / self._clip_norm_type)
clip_coef = total_momentum_norm / (total_norm + 1e-6)
if clip_coef < 1:
for p in group['params']:
p.grad.data.mul_(clip_coef)
if self._grad_ignore_type == 'ignore_value':
grad_ignore_value(new_params, self._ignore_value)
elif self._grad_ignore_type == 'ignore_norm':
grad_ignore_norm(new_params, self._ignore_value, self._ignore_norm_type)
elif self._grad_ignore_type == 'ignore_momentum':
flag = False
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['momentum'], group['centered'])
grad = p.grad.data
alpha = group['alpha']
state['thre_square_avg'].mul_(alpha).addcmul_(1 - alpha, grad, grad)
if state['step'] >= self._ignore_momentum_timestep: # initial value is inaccurate
if grad.abs() > state['thre_square_avg'].sqrt() * self._ignore_coef:
flag = True
break
else:
continue
break
if flag:
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
p.grad.zero_()
elif self._grad_ignore_type == 'ignore_momentum_norm':
# might have multi param_group, we should calculate each group differently.
step = inf
for group in self.param_groups:
total_norm = 0
total_momentum_norm = 0
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self._state_init(p, group['momentum'], group['centered'])
grad = p.grad.data
alpha = group['alpha']
state['thre_square_avg'].mul_(alpha).addcmul_(1 - alpha, grad, grad)
# sum total_norm
param_norm = grad.norm(self._ignore_norm_type)
total_norm += param_norm.item() ** self._ignore_norm_type
# sum momentum_norm
momentum = (state['thre_square_avg'].sqrt() * self._ignore_coef).norm(self._ignore_norm_type)
total_momentum_norm += momentum.item() ** self._ignore_norm_type
step = min(step, state['step'])
if step > self._ignore_momentum_timestep:
total_norm = total_norm ** (1. / self._ignore_norm_type)
total_momentum_norm = total_momentum_norm ** (1. / self._ignore_norm_type)
ignore_coef = total_momentum_norm / (total_norm + 1e-6)
if ignore_coef < 1:
for p in group['params']:
p.grad.zero_()
return super().step(closure=closure)
def get_grad(self) -> float:
"""
Overview:
calculate grad norm of the parameters whose grad norms are not None in the model.
"""
total_norm = 0.
params = [t for group in self.param_groups for t in group['params'] if t.requires_grad and t.grad is not None]
for p in params:
param_norm = p.grad.data.norm(self._clip_norm_type)
total_norm += param_norm.item() ** self._clip_norm_type
return total_norm
class PCGrad():
"""
Overview:
PCGrad optimizer to support multi-task.
you can view the paper in the following link https://arxiv.org/pdf/2001.06782.pdf
Interfaces:
``__init__``, ``zero_grad``, ``step``, ``pc_backward``
Properties:
- optimizer (:obj:`torch.optim`): the optimizer to be used
"""
def __init__(self, optimizer, reduction='mean'):
"""
Overview:
Initialization of PCGrad optimizer
Arguments:
- optimizer (:obj:`torch.optim`): the optimizer to be used
- reduction (:obj:`str`): the reduction method, support ['mean', 'sum']
"""
self._optim, self._reduction = optimizer, reduction
@property
def optimizer(self):
"""
Overview:
get the optimizer
"""
return self._optim
def zero_grad(self):
"""
Overview:
clear the gradient of the parameters
"""
return self._optim.zero_grad(set_to_none=True)
def step(self):
"""
Overview:
update the parameters with the gradient
"""
return self._optim.step()
def pc_backward(self, objectives):
"""
Overview:
calculate the gradient of the parameters
Arguments:
- objectives: a list of objectives
"""
grads, shapes, has_grads = self._pack_grad(objectives)
pc_grad = self._project_conflicting(grads, has_grads)
pc_grad = self._unflatten_grad(pc_grad, shapes[0])
self._set_grad(pc_grad)
return
def _project_conflicting(self, grads, has_grads, shapes=None):
"""
Overview:
project the conflicting gradient to the orthogonal space
Arguments:
- grads (:obj:`list`): a list of the gradient of the parameters
- has_grads (:obj:`list`): a list of mask represent whether the parameter has gradient
- shapes (:obj:`list`): a list of the shape of the parameters
"""
shared = torch.stack(has_grads).prod(0).bool()
pc_grad, num_task = copy.deepcopy(grads), len(grads)
for g_i in pc_grad:
random.shuffle(grads)
for g_j in grads:
g_i_g_j = torch.dot(g_i, g_j)
if g_i_g_j < 0:
g_i -= (g_i_g_j) * g_j / (g_j.norm() ** 2)
merged_grad = torch.zeros_like(grads[0]).to(grads[0].device)
if self._reduction:
merged_grad[shared] = torch.stack([g[shared] for g in pc_grad]).mean(dim=0)
elif self._reduction == 'sum':
merged_grad[shared] = torch.stack([g[shared] for g in pc_grad]).sum(dim=0)
else:
raise KeyError("invalid reduction method")
merged_grad[~shared] = torch.stack([g[~shared] for g in pc_grad]).sum(dim=0)
return merged_grad
def _set_grad(self, grads):
"""
Overview:
set the modified gradients to the network
Arguments:
- grads (:obj:`list`): a list of the gradient of the parameters
"""
idx = 0
for group in self._optim.param_groups:
for p in group['params']:
# if p.grad is None: continue
p.grad = grads[idx]
idx += 1
return
def _pack_grad(self, objectives):
"""
Overview:
pack the gradient of the parameters of the network for each objective
Arguments:
- objectives: a list of objectives
Returns:
- grad: a list of the gradient of the parameters
- shape: a list of the shape of the parameters
- has_grad: a list of mask represent whether the parameter has gradient
"""
grads, shapes, has_grads = [], [], []
for obj in objectives:
self._optim.zero_grad(set_to_none=True)
obj.backward(retain_graph=True)
grad, shape, has_grad = self._retrieve_grad()
grads.append(self._flatten_grad(grad, shape))
has_grads.append(self._flatten_grad(has_grad, shape))
shapes.append(shape)
return grads, shapes, has_grads
def _unflatten_grad(self, grads, shapes):
"""
Overview:
unflatten the gradient of the parameters of the network
Arguments:
- grads (:obj:`list`): a list of the gradient of the parameters
- shapes (:obj:`list`): a list of the shape of the parameters
"""
unflatten_grad, idx = [], 0
for shape in shapes:
length = np.prod(shape)
unflatten_grad.append(grads[idx:idx + length].view(shape).clone())
idx += length
return unflatten_grad
def _flatten_grad(self, grads, shapes):
"""
Overview:
flatten the gradient of the parameters of the network
Arguments:
- grads (:obj:`list`): a list of the gradient of the parameters
- shapes (:obj:`list`): a list of the shape of the parameters
"""
flatten_grad = torch.cat([g.flatten() for g in grads])
return flatten_grad
def _retrieve_grad(self):
"""
Overview:
get the gradient of the parameters of the network with specific objective
Returns:
- grad: a list of the gradient of the parameters
- shape: a list of the shape of the parameters
- has_grad: a list of mask represent whether the parameter has gradient
"""
grad, shape, has_grad = [], [], []
for group in self._optim.param_groups:
for p in group['params']:
# if p.grad is None: continue
# tackle the multi-head scenario
if p.grad is None:
shape.append(p.shape)
grad.append(torch.zeros_like(p).to(p.device))
has_grad.append(torch.zeros_like(p).to(p.device))
continue
shape.append(p.grad.shape)
grad.append(p.grad.clone())
has_grad.append(torch.ones_like(p).to(p.device))
return grad, shape, has_grad
def configure_weight_decay(model: nn.Module, weight_decay: float) -> List:
"""
Overview:
Separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layer-norm or embedding weights).
Arguments:
- model (:obj:`nn.Module`): the given PyTorch model.
- weight_decay (:obj:`float`): weight decay value for optimizer.
Returns:
- optim groups (:obj:`List`): the parameter groups to be set in the latter optimizer.
"""
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in model.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
# Because named_modules and named_parameters are recursive
# we will see the same tensors p many times. But doing it this way
# allows us to know which parent module any tensor p belongs to.
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
else:
decay.add(fpn)
decay = decay - no_decay
# validate that we considered every parameter
param_dict = {pn: p for pn, p in model.named_parameters()}
union_params = decay | no_decay
assert len(
param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params),)
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": weight_decay
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0
},
]
return optim_groups