zjowowen's picture
init space
079c32c
raw
history blame
15.1 kB
from collections.abc import Sequence, Mapping
from typing import List, Dict, Union, Any
import torch
import treetensor.torch as ttorch
import re
import collections.abc as container_abcs
from ding.compatibility import torch_ge_131
int_classes = int
string_classes = (str, bytes)
np_str_obj_array_pattern = re.compile(r'[SaUO]')
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}"
)
def ttorch_collate(x, json: bool = False, cat_1dim: bool = True):
"""
Overview:
Collates a list of tensors or nested dictionaries of tensors into a single tensor or nested \
dictionary of tensors.
Arguments:
- x : The input list of tensors or nested dictionaries of tensors.
- json (:obj:`bool`): If True, converts the output to JSON format. Defaults to False.
- cat_1dim (:obj:`bool`): If True, concatenates tensors with shape (B, 1) along the last dimension. \
Defaults to True.
Returns:
The collated output tensor or nested dictionary of tensors.
Examples:
>>> # case 1: Collate a list of tensors
>>> tensors = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])]
>>> collated = ttorch_collate(tensors)
collated = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> # case 2: Collate a nested dictionary of tensors
>>> nested_dict = {
'a': torch.tensor([1, 2, 3]),
'b': torch.tensor([4, 5, 6]),
'c': torch.tensor([7, 8, 9])
}
>>> collated = ttorch_collate(nested_dict)
collated = {
'a': torch.tensor([1, 2, 3]),
'b': torch.tensor([4, 5, 6]),
'c': torch.tensor([7, 8, 9])
}
>>> # case 3: Collate a list of nested dictionaries of tensors
>>> nested_dicts = [
{'a': torch.tensor([1, 2, 3]), 'b': torch.tensor([4, 5, 6])},
{'a': torch.tensor([7, 8, 9]), 'b': torch.tensor([10, 11, 12])}
]
>>> collated = ttorch_collate(nested_dicts)
collated = {
'a': torch.tensor([[1, 2, 3], [7, 8, 9]]),
'b': torch.tensor([[4, 5, 6], [10, 11, 12]])
}
"""
def inplace_fn(t):
for k in t.keys():
if isinstance(t[k], torch.Tensor):
if len(t[k].shape) == 2 and t[k].shape[1] == 1: # reshape (B, 1) -> (B)
t[k] = t[k].squeeze(-1)
else:
inplace_fn(t[k])
x = ttorch.stack(x)
if cat_1dim:
inplace_fn(x)
if json:
x = x.json()
return x
def default_collate(batch: Sequence,
cat_1dim: bool = True,
ignore_prefix: list = ['collate_ignore']) -> Union[torch.Tensor, Mapping, Sequence]:
"""
Overview:
Put each data field into a tensor with outer dimension batch size.
Arguments:
- batch (:obj:`Sequence`): A data sequence, whose length is batch size, whose element is one piece of data.
- cat_1dim (:obj:`bool`): Whether to concatenate tensors with shape (B, 1) to (B), defaults to True.
- ignore_prefix (:obj:`list`): A list of prefixes to ignore when collating dictionaries, \
defaults to ['collate_ignore'].
Returns:
- ret (:obj:`Union[torch.Tensor, Mapping, Sequence]`): the collated data, with batch size into each data \
field. The return dtype depends on the original element dtype, can be [torch.Tensor, Mapping, Sequence].
Example:
>>> # a list with B tensors shaped (m, n) -->> a tensor shaped (B, m, n)
>>> a = [torch.zeros(2,3) for _ in range(4)]
>>> default_collate(a).shape
torch.Size([4, 2, 3])
>>>
>>> # a list with B lists, each list contains m elements -->> a list of m tensors, each with shape (B, )
>>> a = [[0 for __ in range(3)] for _ in range(4)]
>>> default_collate(a)
[tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0])]
>>>
>>> # a list with B dicts, whose values are tensors shaped :math:`(m, n)` -->>
>>> # a dict whose values are tensors with shape :math:`(B, m, n)`
>>> a = [{i: torch.zeros(i,i+1) for i in range(2, 4)} for _ in range(4)]
>>> print(a[0][2].shape, a[0][3].shape)
torch.Size([2, 3]) torch.Size([3, 4])
>>> b = default_collate(a)
>>> print(b[2].shape, b[3].shape)
torch.Size([4, 2, 3]) torch.Size([4, 3, 4])
"""
if isinstance(batch, ttorch.Tensor):
return batch.json()
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch_ge_131() and torch.utils.data.get_worker_info() is not None:
# If we're in a background process, directly concatenate into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
if elem.shape == (1, ) and cat_1dim:
# reshape (B, 1) -> (B)
return torch.cat(batch, 0, out=out)
# return torch.stack(batch, 0, out=out)
else:
return torch.stack(batch, 0, out=out)
elif isinstance(elem, ttorch.Tensor):
return ttorch_collate(batch, json=True, cat_1dim=cat_1dim)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return default_collate([torch.as_tensor(b) for b in batch], cat_1dim=cat_1dim)
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float32)
elif isinstance(elem, int_classes):
dtype = torch.bool if isinstance(elem, bool) else torch.int64
return torch.tensor(batch, dtype=dtype)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
ret = {}
for key in elem:
if any([key.startswith(t) for t in ignore_prefix]):
ret[key] = [d[key] for d in batch]
else:
ret[key] = default_collate([d[key] for d in batch], cat_1dim=cat_1dim)
return ret
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(default_collate(samples, cat_1dim=cat_1dim) for samples in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
transposed = zip(*batch)
return [default_collate(samples, cat_1dim=cat_1dim) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
def timestep_collate(batch: List[Dict[str, Any]]) -> Dict[str, Union[torch.Tensor, list]]:
"""
Overview:
Collates a batch of timestepped data fields into tensors with the outer dimension being the batch size. \
Each timestepped data field is represented as a tensor with shape [T, B, any_dims], where T is the length \
of the sequence, B is the batch size, and any_dims represents the shape of the tensor at each timestep.
Arguments:
- batch(:obj:`List[Dict[str, Any]]`): A list of dictionaries with length B, where each dictionary represents \
a timestepped data field. Each dictionary contains a key-value pair, where the key is the name of the \
data field and the value is a sequence of torch.Tensor objects with any shape.
Returns:
- ret(:obj:`Dict[str, Union[torch.Tensor, list]]`): The collated data, with the timestep and batch size \
incorporated into each data field. The shape of each data field is [T, B, dim1, dim2, ...].
Examples:
>>> batch = [
{'data0': [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6])]},
{'data1': [torch.tensor([7, 8, 9]), torch.tensor([10, 11, 12])]}
]
>>> collated_data = timestep_collate(batch)
>>> print(collated_data['data'].shape)
torch.Size([2, 2, 3])
"""
def stack(data):
if isinstance(data, container_abcs.Mapping):
return {k: stack(data[k]) for k in data}
elif isinstance(data, container_abcs.Sequence) and isinstance(data[0], torch.Tensor):
return torch.stack(data)
else:
return data
elem = batch[0]
assert isinstance(elem, (container_abcs.Mapping, list)), type(elem)
if isinstance(batch[0], list): # new pipeline + treetensor
prev_state = [[b[i].get('prev_state') for b in batch] for i in range(len(batch[0]))]
batch_data = ttorch.stack([ttorch_collate(b) for b in batch]) # (B, T, *)
del batch_data.prev_state
batch_data = batch_data.transpose(1, 0)
batch_data.prev_state = prev_state
else:
prev_state = [b.pop('prev_state') for b in batch]
batch_data = default_collate(batch) # -> {some_key: T lists}, each list is [B, some_dim]
batch_data = stack(batch_data) # -> {some_key: [T, B, some_dim]}
transformed_prev_state = list(zip(*prev_state))
batch_data['prev_state'] = transformed_prev_state
# append back prev_state, avoiding multi batch share the same data bug
for i in range(len(batch)):
batch[i]['prev_state'] = prev_state[i]
return batch_data
def diff_shape_collate(batch: Sequence) -> Union[torch.Tensor, Mapping, Sequence]:
"""
Overview:
Collates a batch of data with different shapes.
This function is similar to `default_collate`, but it allows tensors in the batch to have `None` values, \
which is common in StarCraft observations.
Arguments:
- batch (:obj:`Sequence`): A sequence of data, where each element is a piece of data.
Returns:
- ret (:obj:`Union[torch.Tensor, Mapping, Sequence]`): The collated data, with the batch size applied \
to each data field. The return type depends on the original element type and can be a torch.Tensor, \
Mapping, or Sequence.
Examples:
>>> # a list with B tensors shaped (m, n) -->> a tensor shaped (B, m, n)
>>> a = [torch.zeros(2,3) for _ in range(4)]
>>> diff_shape_collate(a).shape
torch.Size([4, 2, 3])
>>>
>>> # a list with B lists, each list contains m elements -->> a list of m tensors, each with shape (B, )
>>> a = [[0 for __ in range(3)] for _ in range(4)]
>>> diff_shape_collate(a)
[tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0]), tensor([0, 0, 0, 0])]
>>>
>>> # a list with B dicts, whose values are tensors shaped :math:`(m, n)` -->>
>>> # a dict whose values are tensors with shape :math:`(B, m, n)`
>>> a = [{i: torch.zeros(i,i+1) for i in range(2, 4)} for _ in range(4)]
>>> print(a[0][2].shape, a[0][3].shape)
torch.Size([2, 3]) torch.Size([3, 4])
>>> b = diff_shape_collate(a)
>>> print(b[2].shape, b[3].shape)
torch.Size([4, 2, 3]) torch.Size([4, 3, 4])
"""
elem = batch[0]
elem_type = type(elem)
if any([isinstance(elem, type(None)) for elem in batch]):
return batch
elif isinstance(elem, torch.Tensor):
shapes = [e.shape for e in batch]
if len(set(shapes)) != 1:
return batch
else:
return torch.stack(batch, 0)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray':
return diff_shape_collate([torch.as_tensor(b) for b in batch]) # todo
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float32)
elif isinstance(elem, int_classes):
dtype = torch.bool if isinstance(elem, bool) else torch.int64
return torch.tensor(batch, dtype=dtype)
elif isinstance(elem, Mapping):
return {key: diff_shape_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(diff_shape_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, Sequence):
transposed = zip(*batch)
return [diff_shape_collate(samples) for samples in transposed]
raise TypeError('not support element type: {}'.format(elem_type))
def default_decollate(
batch: Union[torch.Tensor, Sequence, Mapping],
ignore: List[str] = ['prev_state', 'prev_actor_state', 'prev_critic_state']
) -> List[Any]:
"""
Overview:
Drag out batch_size collated data's batch size to decollate it, which is the reverse operation of \
``default_collate``.
Arguments:
- batch (:obj:`Union[torch.Tensor, Sequence, Mapping]`): The collated data batch. It can be a tensor, \
sequence, or mapping.
- ignore(:obj:`List[str]`): A list of names to be ignored. Only applicable if the input ``batch`` is a \
dictionary. If a key is in this list, its value will remain the same without decollation. Defaults to \
['prev_state', 'prev_actor_state', 'prev_critic_state'].
Returns:
- ret (:obj:`List[Any]`): A list with B elements, where B is the batch size.
Examples:
>>> batch = {
'a': [
[1, 2, 3],
[4, 5, 6]
],
'b': [
[7, 8, 9],
[10, 11, 12]
]}
>>> default_decollate(batch)
{
0: {'a': [1, 2, 3], 'b': [7, 8, 9]},
1: {'a': [4, 5, 6], 'b': [10, 11, 12]},
}
"""
if isinstance(batch, torch.Tensor):
batch = torch.split(batch, 1, dim=0)
# Squeeze if the original batch's shape is like (B, dim1, dim2, ...);
# otherwise, directly return the list.
if len(batch[0].shape) > 1:
batch = [elem.squeeze(0) for elem in batch]
return list(batch)
elif isinstance(batch, Sequence):
return list(zip(*[default_decollate(e) for e in batch]))
elif isinstance(batch, Mapping):
tmp = {k: v if k in ignore else default_decollate(v) for k, v in batch.items()}
B = len(list(tmp.values())[0])
return [{k: tmp[k][i] for k in tmp.keys()} for i in range(B)]
elif isinstance(batch, torch.distributions.Distribution): # For compatibility
return [None for _ in range(batch.batch_shape[0])]
raise TypeError("Not supported batch type: {}".format(type(batch)))