gomoku / DI-engine /ding /world_model /base_world_model.py
zjowowen's picture
init space
079c32c
raw
history blame
14 kB
from typing import Tuple, Callable, Optional
from collections import namedtuple
from abc import ABC, abstractmethod
import torch
from torch import Tensor, nn
from easydict import EasyDict
from ding.worker import IBuffer
from ding.envs import BaseEnv
from ding.utils import deep_merge_dicts
from ding.world_model.utils import get_rollout_length_scheduler
from ding.utils import import_module, WORLD_MODEL_REGISTRY
def get_world_model_cls(cfg):
import_module(cfg.get('import_names', []))
return WORLD_MODEL_REGISTRY.get(cfg.type)
def create_world_model(cfg, *args, **kwargs):
import_module(cfg.get('import_names', []))
return WORLD_MODEL_REGISTRY.build(cfg.type, cfg, *args, **kwargs)
class WorldModel(ABC):
r"""
Overview:
Abstract baseclass for world model.
Interfaces:
should_train, should_eval, train, eval, step
"""
config = dict(
train_freq=250, # w.r.t environment step
eval_freq=250, # w.r.t environment step
cuda=True,
rollout_length_scheduler=dict(
type='linear',
rollout_start_step=20000,
rollout_end_step=150000,
rollout_length_min=1,
rollout_length_max=25,
)
)
def __init__(self, cfg: dict, env: BaseEnv, tb_logger: 'SummaryWriter'): # noqa
self.cfg = cfg
self.env = env
self.tb_logger = tb_logger
self._cuda = cfg.cuda
self.train_freq = cfg.train_freq
self.eval_freq = cfg.eval_freq
self.rollout_length_scheduler = get_rollout_length_scheduler(cfg.rollout_length_scheduler)
self.last_train_step = 0
self.last_eval_step = 0
@classmethod
def default_config(cls: type) -> EasyDict:
# can not call default_config() recursively
# because config will be overwritten by subclasses
merge_cfg = EasyDict(cfg_type=cls.__name__ + 'Dict')
while cls != ABC:
merge_cfg = deep_merge_dicts(merge_cfg, cls.config)
cls = cls.__base__
return merge_cfg
def should_train(self, envstep: int):
r"""
Overview:
Check whether need to train world model.
"""
return (envstep - self.last_train_step) >= self.train_freq
def should_eval(self, envstep: int):
r"""
Overview:
Check whether need to evaluate world model.
"""
return (envstep - self.last_eval_step) >= self.eval_freq and self.last_train_step != 0
@abstractmethod
def train(self, env_buffer: IBuffer, envstep: int, train_iter: int):
r"""
Overview:
Train world model using data from env_buffer.
Arguments:
- env_buffer (:obj:`IBuffer`): the buffer which collects real environment steps
- envstep (:obj:`int`): the current number of environment steps in real environment
- train_iter (:obj:`int`): the current number of policy training iterations
"""
raise NotImplementedError
@abstractmethod
def eval(self, env_buffer: IBuffer, envstep: int, train_iter: int):
r"""
Overview:
Evaluate world model using data from env_buffer.
Arguments:
- env_buffer (:obj:`IBuffer`): the buffer that collects real environment steps
- envstep (:obj:`int`): the current number of environment steps in real environment
- train_iter (:obj:`int`): the current number of policy training iterations
"""
raise NotImplementedError
@abstractmethod
def step(self, obs: Tensor, action: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
r"""
Overview:
Take one step in world model.
Arguments:
- obs (:obj:`torch.Tensor`): current observations :math:`S_t`
- action (:obj:`torch.Tensor`): current actions :math:`A_t`
Returns:
- reward (:obj:`torch.Tensor`): rewards :math:`R_t`
- next_obs (:obj:`torch.Tensor`): next observations :math:`S_t+1`
- done (:obj:`torch.Tensor`): whether the episodes ends
Shapes:
:math:`B`: batch size
:math:`O`: observation dimension
:math:`A`: action dimension
- obs: [B, O]
- action: [B, A]
- reward: [B, ]
- next_obs: [B, O]
- done: [B, ]
"""
raise NotImplementedError
class DynaWorldModel(WorldModel, ABC):
r"""
Overview:
Dyna-style world model (summarized in arXiv: 1907.02057) which stores and\
reuses imagination rollout in the imagination buffer.
Interfaces:
sample, fill_img_buffer, should_train, should_eval, train, eval, step
"""
config = dict(
other=dict(
real_ratio=0.05,
rollout_retain=4,
rollout_batch_size=100000,
imagination_buffer=dict(
type='elastic',
replay_buffer_size=6000000,
deepcopy=False,
enable_track_used_data=False,
# set_buffer_size=set_buffer_size,
periodic_thruput_seconds=60,
),
)
)
def __init__(self, cfg: dict, env: BaseEnv, tb_logger: 'SummaryWriter'): # noqa
super().__init__(cfg, env, tb_logger)
self.real_ratio = cfg.other.real_ratio
self.rollout_batch_size = cfg.other.rollout_batch_size
self.rollout_retain = cfg.other.rollout_retain
self.buffer_size_scheduler = \
lambda x: self.rollout_length_scheduler(x) * self.rollout_batch_size * self.rollout_retain
def sample(self, env_buffer: IBuffer, img_buffer: IBuffer, batch_size: int, train_iter: int) -> dict:
r"""
Overview:
Sample from the combination of environment buffer and imagination buffer with\
certain ratio to generate batched data for policy training.
Arguments:
- policy (:obj:`namedtuple`): policy in collect mode
- env_buffer (:obj:`IBuffer`): the buffer that collects real environment steps
- img_buffer (:obj:`IBuffer`): the buffer that collects imagination steps
- batch_size (:obj:`int`): the batch size for policy training
- train_iter (:obj:`int`): the current number of policy training iterations
Returns:
- data (:obj:`int`): the training data for policy training
"""
env_batch_size = int(batch_size * self.real_ratio)
img_batch_size = batch_size - env_batch_size
env_data = env_buffer.sample(env_batch_size, train_iter)
img_data = img_buffer.sample(img_batch_size, train_iter)
train_data = env_data + img_data
return train_data
def fill_img_buffer(
self, policy: namedtuple, env_buffer: IBuffer, img_buffer: IBuffer, envstep: int, train_iter: int
):
r"""
Overview:
Sample from the env_buffer, rollouts to generate new data, and push them into the img_buffer.
Arguments:
- policy (:obj:`namedtuple`): policy in collect mode
- env_buffer (:obj:`IBuffer`): the buffer that collects real environment steps
- img_buffer (:obj:`IBuffer`): the buffer that collects imagination steps
- envstep (:obj:`int`): the current number of environment steps in real environment
- train_iter (:obj:`int`): the current number of policy training iterations
"""
from ding.torch_utils import to_tensor
from ding.envs import BaseEnvTimestep
from ding.worker.collector.base_serial_collector import to_tensor_transitions
def step(obs, act):
# This function has the same input and output format as env manager's step
data_id = list(obs.keys())
obs = torch.stack([obs[id] for id in data_id], dim=0)
act = torch.stack([act[id] for id in data_id], dim=0)
with torch.no_grad():
rewards, next_obs, terminals = self.step(obs, act)
# terminals = self.termination_fn(next_obs)
timesteps = {
id: BaseEnvTimestep(n, r, d, {})
for id, n, r, d in zip(
data_id,
next_obs.cpu().numpy(),
rewards.unsqueeze(-1).cpu().numpy(), # ding api
terminals.cpu().numpy()
)
}
return timesteps
# set rollout length
rollout_length = self.rollout_length_scheduler(envstep)
# load data
data = env_buffer.sample(self.rollout_batch_size, train_iter, replace=True)
obs = {id: data[id]['obs'] for id in range(len(data))}
# rollout
buffer = [[] for id in range(len(obs))]
new_data = []
for i in range(rollout_length):
# get action
obs = to_tensor(obs, dtype=torch.float32)
policy_output = policy.forward(obs)
actions = {id: output['action'] for id, output in policy_output.items()}
# predict next obs and reward
# timesteps = self.step(obs, actions, env_model)
timesteps = step(obs, actions)
obs_new = {}
for id, timestep in timesteps.items():
transition = policy.process_transition(obs[id], policy_output[id], timestep)
transition['collect_iter'] = train_iter
buffer[id].append(transition)
if not timestep.done:
obs_new[id] = timestep.obs
if timestep.done or i + 1 == rollout_length:
transitions = to_tensor_transitions(buffer[id])
train_sample = policy.get_train_sample(transitions)
new_data.extend(train_sample)
if len(obs_new) == 0:
break
obs = obs_new
img_buffer.push(new_data, cur_collector_envstep=envstep)
class DreamWorldModel(WorldModel, ABC):
r"""
Overview:
Dreamer-style world model which uses each imagination rollout only once\
and backpropagate through time(rollout) to optimize policy.
Interfaces:
rollout, should_train, should_eval, train, eval, step
"""
def rollout(self, obs: Tensor, actor_fn: Callable[[Tensor], Tuple[Tensor, Tensor]], envstep: int,
**kwargs) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Optional[bool]]:
r"""
Overview:
Generate batched imagination rollouts starting from the current observations.\
This function is useful for value gradients where the policy is optimized by BPTT.
Arguments:
- obs (:obj:`Tensor`): the current observations :math:`S_t`
- actor_fn (:obj:`Callable`): the unified API :math:`(A_t, H_t) = pi(S_t)`
- envstep (:obj:`int`): the current number of environment steps in real environment
Returns:
- obss (:obj:`Tensor`): :math:`S_t, ..., S_t+n`
- actions (:obj:`Tensor`): :math:`A_t, ..., A_t+n`
- rewards (:obj:`Tensor`): :math:`R_t, ..., R_t+n-1`
- aug_rewards (:obj:`Tensor`): :math:`H_t, ..., H_t+n`, this can be entropy bonus as in SAC,
otherwise it should be a zero tensor
- dones (:obj:`Tensor`): :math:`\text{done}_t, ..., \text{done}_t+n`
Shapes:
:math:`N`: time step
:math:`B`: batch size
:math:`O`: observation dimension
:math:`A`: action dimension
- obss: :math:`[N+1, B, O]`, where obss[0] are the real observations
- actions: :math:`[N+1, B, A]`
- rewards: :math:`[N, B]`
- aug_rewards: :math:`[N+1, B]`
- dones: :math:`[N, B]`
.. note::
- The rollout length is determined by rollout length scheduler.
- actor_fn's inputs and outputs shape are similar to WorldModel.step()
"""
horizon = self.rollout_length_scheduler(envstep)
if isinstance(self, nn.Module):
# Rollouts should propagate gradients only to policy,
# so make sure that the world model is not updated by rollout.
self.requires_grad_(False)
obss = [obs]
actions = []
rewards = []
aug_rewards = [] # -temperature*logprob
dones = []
for _ in range(horizon):
action, aug_reward = actor_fn(obs)
# done: probability of termination
reward, obs, done = self.step(obs, action, **kwargs)
reward = reward + aug_reward
obss.append(obs)
actions.append(action)
rewards.append(reward)
aug_rewards.append(aug_reward)
dones.append(done)
action, aug_reward = actor_fn(obs)
actions.append(action)
aug_rewards.append(aug_reward)
if isinstance(self, nn.Module):
self.requires_grad_(True)
return (
torch.stack(obss),
torch.stack(actions),
# rewards is an empty list when horizon=0
torch.stack(rewards) if rewards else torch.tensor(rewards, device=obs.device),
torch.stack(aug_rewards),
torch.stack(dones) if dones else torch.tensor(dones, device=obs.device)
)
class HybridWorldModel(DynaWorldModel, DreamWorldModel, ABC):
r"""
Overview:
The hybrid model that combines reused and on-the-fly rollouts.
Interfaces:
rollout, sample, fill_img_buffer, should_train, should_eval, train, eval, step
"""
def __init__(self, cfg: dict, env: BaseEnv, tb_logger: 'SummaryWriter'): # noqa
DynaWorldModel.__init__(self, cfg, env, tb_logger)
DreamWorldModel.__init__(self, cfg, env, tb_logger)