zjowowen's picture
init space
079c32c
raw
history blame
4.42 kB
import pytest
import torch
from torch import nn
from itertools import product
from easydict import EasyDict
from ding.world_model.ddppo import DDPPOWorldMode, get_batch_jacobian, get_neighbor_index
from ding.utils import deep_merge_dicts
# arguments
state_size = [16]
action_size = [16, 1]
args = list(product(*[state_size, action_size]))
@pytest.mark.unittest
class TestDDPPO:
def get_world_model(self, state_size, action_size):
cfg = DDPPOWorldMode.default_config()
cfg.model.max_epochs_since_update = 0
cfg = deep_merge_dicts(
cfg, dict(cuda=False, model=dict(state_size=state_size, action_size=action_size, reward_size=1))
)
fake_env = EasyDict(termination_fn=lambda obs: torch.zeros_like(obs.sum(-1)).bool())
model = DDPPOWorldMode(cfg, fake_env, None)
model.serial_calc_nn = True
return model
def test_get_neighbor_index(self):
k = 2
data = torch.tensor([[0, 0, 0], [0, 0, 1], [0, 0, -1], [5, 0, 0], [5, 0, 1], [5, 0, -1]])
idx = get_neighbor_index(data, k, serial=True)
target_idx = torch.tensor([[2, 1], [0, 2], [0, 1], [5, 4], [3, 5], [3, 4]])
assert (idx - target_idx).sum() == 0
def test_get_batch_jacobian(self):
B, in_dim, out_dim = 64, 4, 8
net = nn.Linear(in_dim, out_dim)
x = torch.randn(B, in_dim)
jacobian = get_batch_jacobian(net, x, out_dim)
assert jacobian.shape == (B, out_dim, in_dim)
@pytest.mark.parametrize('state_size, action_size', args)
def test_get_jacobian(self, state_size, action_size):
B, ensemble_size = 64, 7
model = self.get_world_model(state_size, action_size)
train_input_reg = torch.randn(ensemble_size, B, state_size + action_size)
jacobian = model._get_jacobian(model.gradient_model, train_input_reg)
assert jacobian.shape == (ensemble_size, B, state_size + 1, state_size + action_size)
assert jacobian.requires_grad
@pytest.mark.parametrize('state_size, action_size', args)
def test_step(self, state_size, action_size):
states = torch.rand(128, state_size)
actions = torch.rand(128, action_size)
model = self.get_world_model(state_size, action_size)
model.elite_model_idxes = [0, 1]
rewards, next_obs, dones = model.step(states, actions)
assert rewards.shape == (128, )
assert next_obs.shape == (128, state_size)
assert dones.shape == (128, )
@pytest.mark.parametrize('state_size, action_size', args)
def test_train_rollout_model(self, state_size, action_size):
states = torch.rand(1280, state_size)
actions = torch.rand(1280, action_size)
next_states = states + actions.mean(1, keepdim=True)
rewards = next_states.mean(1, keepdim=True).repeat(1, 1)
inputs = torch.cat([states, actions], dim=1)
labels = torch.cat([rewards, next_states], dim=1)
model = self.get_world_model(state_size, action_size)
model._train_rollout_model(inputs[:64], labels[:64])
@pytest.mark.parametrize('state_size, action_size', args)
def test_train_graident_model(self, state_size, action_size):
states = torch.rand(1280, state_size)
actions = torch.rand(1280, action_size)
next_states = states + actions.mean(1, keepdim=True)
rewards = next_states.mean(1, keepdim=True)
inputs = torch.cat([states, actions], dim=1)
labels = torch.cat([rewards, next_states], dim=1)
model = self.get_world_model(state_size, action_size)
model._train_gradient_model(inputs[:64], labels[:64], inputs[:64], labels[:64])
@pytest.mark.parametrize('state_size, action_size', args[:1])
def test_others(self, state_size, action_size):
states = torch.rand(1280, state_size)
actions = torch.rand(1280, action_size)
next_states = states + actions.mean(1, keepdim=True)
rewards = next_states.mean(1, keepdim=True)
inputs = torch.cat([states, actions], dim=1)
labels = torch.cat([rewards, next_states], dim=1)
model = self.get_world_model(state_size, action_size)
model._train_rollout_model(inputs[:64], labels[:64])
model._train_gradient_model(inputs[:64], labels[:64], inputs[:64], labels[:64])
model._save_states()
model._load_states()
model._save_best(0, [1, 2, 3])