|
import os |
|
from functools import partial |
|
from typing import Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from tensorboardX import SummaryWriter |
|
|
|
from ding.config import compile_config |
|
from ding.envs import create_env_manager |
|
from ding.envs import get_vec_env_setting |
|
from ding.policy import create_policy |
|
from ding.utils import set_pkg_seed |
|
from ding.worker import BaseLearner |
|
from lzero.worker import MuZeroEvaluator |
|
|
|
|
|
def eval_muzero( |
|
input_cfg: Tuple[dict, dict], |
|
seed: int = 0, |
|
model: Optional[torch.nn.Module] = None, |
|
model_path: Optional[str] = None, |
|
num_episodes_each_seed: int = 1, |
|
print_seed_details: int = False, |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
The eval entry for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero. |
|
Arguments: |
|
- input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type. |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- model_path (:obj:`Optional[str]`): The pretrained model path, which should |
|
point to the ckpt file of the pretrained model, and an absolute path is recommended. |
|
In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
cfg, create_cfg = input_cfg |
|
assert create_cfg.policy.type in ['efficientzero', 'muzero', 'stochastic_muzero', 'gumbel_muzero', 'sampled_efficientzero'], \ |
|
"LightZero now only support the following algo.: 'efficientzero', 'muzero', 'stochastic_muzero', 'gumbel_muzero', 'sampled_efficientzero'" |
|
|
|
if cfg.policy.cuda and torch.cuda.is_available(): |
|
cfg.policy.device = 'cuda' |
|
else: |
|
cfg.policy.device = 'cpu' |
|
|
|
cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) |
|
|
|
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
evaluator_env.seed(cfg.seed, dynamic_seed=False) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval']) |
|
|
|
|
|
if model_path is not None: |
|
policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device)) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
|
|
|
|
|
|
|
|
policy_config = cfg.policy |
|
evaluator = MuZeroEvaluator( |
|
eval_freq=cfg.policy.eval_freq, |
|
n_evaluator_episode=cfg.env.n_evaluator_episode, |
|
stop_value=cfg.env.stop_value, |
|
env=evaluator_env, |
|
policy=policy.eval_mode, |
|
tb_logger=tb_logger, |
|
exp_name=cfg.exp_name, |
|
policy_config=policy_config |
|
) |
|
|
|
|
|
|
|
|
|
|
|
learner.call_hook('before_run') |
|
|
|
while True: |
|
|
|
|
|
|
|
returns = [] |
|
for i in range(num_episodes_each_seed): |
|
stop_flag, episode_info = evaluator.eval(learner.save_checkpoint, learner.train_iter) |
|
returns.append(episode_info['eval_episode_return']) |
|
|
|
returns = np.array(returns) |
|
|
|
if print_seed_details: |
|
print("=" * 20) |
|
print(f'In seed {seed}, returns: {returns}') |
|
if cfg.policy.env_type == 'board_games': |
|
print( |
|
f'win rate: {len(np.where(returns == 1.)[0]) / num_episodes_each_seed}, draw rate: {len(np.where(returns == 0.)[0]) / num_episodes_each_seed}, lose rate: {len(np.where(returns == -1.)[0]) / num_episodes_each_seed}' |
|
) |
|
print("=" * 20) |
|
|
|
return returns.mean(), returns |
|
|