|
import logging |
|
import os |
|
from functools import partial |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from ding.config import compile_config |
|
from ding.envs import create_env_manager |
|
from ding.envs import get_vec_env_setting |
|
from ding.policy import create_policy |
|
from ding.rl_utils import get_epsilon_greedy_fn |
|
from ding.utils import set_pkg_seed |
|
from ding.worker import BaseLearner |
|
from tensorboardX import SummaryWriter |
|
|
|
from lzero.entry.utils import log_buffer_memory_usage, random_collect |
|
from lzero.policy import visit_count_temperature |
|
from lzero.policy.random_policy import LightZeroRandomPolicy |
|
from lzero.reward_model.rnd_reward_model import RNDRewardModel |
|
from lzero.worker import MuZeroCollector, MuZeroEvaluator |
|
|
|
|
|
def train_muzero_with_reward_model( |
|
input_cfg: Tuple[dict, dict], |
|
seed: int = 0, |
|
model: Optional[torch.nn.Module] = None, |
|
model_path: Optional[str] = None, |
|
max_train_iter: Optional[int] = int(1e10), |
|
max_env_step: Optional[int] = int(1e10), |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
The train entry for MCTS+RL algorithms augmented with reward_model. |
|
Arguments: |
|
- input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type. |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- model_path (:obj:`Optional[str]`): The pretrained model path, which should |
|
point to the ckpt file of the pretrained model, and an absolute path is recommended. |
|
In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. |
|
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. |
|
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
|
|
cfg, create_cfg = input_cfg |
|
assert create_cfg.policy.type in ['efficientzero', 'muzero', 'muzero_rnd', 'sampled_efficientzero'], \ |
|
"train_muzero entry now only support the following algo.: 'efficientzero', 'muzero', 'sampled_efficientzero'" |
|
|
|
if create_cfg.policy.type in ['muzero', 'muzero_rnd']: |
|
from lzero.mcts import MuZeroGameBuffer as GameBuffer |
|
elif create_cfg.policy.type == 'efficientzero': |
|
from lzero.mcts import EfficientZeroGameBuffer as GameBuffer |
|
elif create_cfg.policy.type == 'sampled_efficientzero': |
|
from lzero.mcts import SampledEfficientZeroGameBuffer as GameBuffer |
|
|
|
if cfg.policy.cuda and torch.cuda.is_available(): |
|
cfg.policy.device = 'cuda' |
|
else: |
|
cfg.policy.device = 'cpu' |
|
|
|
cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) |
|
|
|
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) |
|
|
|
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
collector_env.seed(cfg.seed) |
|
evaluator_env.seed(cfg.seed, dynamic_seed=False) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval']) |
|
|
|
|
|
if model_path is not None: |
|
policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device)) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
|
|
|
|
|
|
|
|
policy_config = cfg.policy |
|
batch_size = policy_config.batch_size |
|
|
|
replay_buffer = GameBuffer(policy_config) |
|
collector = MuZeroCollector( |
|
env=collector_env, |
|
policy=policy.collect_mode, |
|
tb_logger=tb_logger, |
|
exp_name=cfg.exp_name, |
|
policy_config=policy_config |
|
) |
|
evaluator = MuZeroEvaluator( |
|
eval_freq=cfg.policy.eval_freq, |
|
n_evaluator_episode=cfg.env.n_evaluator_episode, |
|
stop_value=cfg.env.stop_value, |
|
env=evaluator_env, |
|
policy=policy.eval_mode, |
|
tb_logger=tb_logger, |
|
exp_name=cfg.exp_name, |
|
policy_config=policy_config |
|
) |
|
|
|
reward_model = RNDRewardModel(cfg.reward_model, policy.collect_mode.get_attribute('device'), tb_logger, |
|
policy._learn_model.representation_network, |
|
policy._target_model_for_intrinsic_reward.representation_network, |
|
cfg.policy.use_momentum_representation_network |
|
) |
|
|
|
|
|
|
|
|
|
|
|
learner.call_hook('before_run') |
|
if cfg.policy.update_per_collect is not None: |
|
update_per_collect = cfg.policy.update_per_collect |
|
|
|
|
|
|
|
|
|
if cfg.policy.random_collect_episode_num > 0: |
|
random_collect(cfg.policy, policy, LightZeroRandomPolicy, collector, collector_env, replay_buffer) |
|
|
|
while True: |
|
log_buffer_memory_usage(learner.train_iter, replay_buffer, tb_logger) |
|
collect_kwargs = {} |
|
|
|
|
|
collect_kwargs['temperature'] = visit_count_temperature( |
|
policy_config.manual_temperature_decay, |
|
policy_config.fixed_temperature_value, |
|
policy_config.threshold_training_steps_for_final_temperature, |
|
trained_steps=learner.train_iter, |
|
) |
|
|
|
if policy_config.eps.eps_greedy_exploration_in_collect: |
|
epsilon_greedy_fn = get_epsilon_greedy_fn(start=policy_config.eps.start, end=policy_config.eps.end, |
|
decay=policy_config.eps.decay, type_=policy_config.eps.type) |
|
collect_kwargs['epsilon'] = epsilon_greedy_fn(collector.envstep) |
|
else: |
|
collect_kwargs['epsilon'] = 0.0 |
|
|
|
|
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
|
|
|
|
new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) |
|
|
|
|
|
|
|
reward_model.collect_data(new_data) |
|
|
|
if reward_model.cfg.input_type == 'latent_state': |
|
|
|
if len(reward_model.train_latent_state) > reward_model.cfg.batch_size: |
|
reward_model.train_with_data() |
|
elif reward_model.cfg.input_type in ['obs', 'latent_state']: |
|
|
|
if len(reward_model.train_obs) > reward_model.cfg.batch_size: |
|
reward_model.train_with_data() |
|
|
|
reward_model.clear_old_data() |
|
|
|
if cfg.policy.update_per_collect is None: |
|
|
|
collected_transitions_num = sum([len(game_segment) for game_segment in new_data[0]]) |
|
update_per_collect = int(collected_transitions_num * cfg.policy.model_update_ratio) |
|
|
|
replay_buffer.push_game_segments(new_data) |
|
|
|
replay_buffer.remove_oldest_data_to_fit() |
|
|
|
|
|
for i in range(update_per_collect): |
|
|
|
if replay_buffer.get_num_of_transitions() > batch_size: |
|
train_data = replay_buffer.sample(batch_size, policy) |
|
else: |
|
logging.warning( |
|
f'The data in replay_buffer is not sufficient to sample a mini-batch: ' |
|
f'batch_size: {batch_size}, ' |
|
f'{replay_buffer} ' |
|
f'continue to collect now ....' |
|
) |
|
break |
|
|
|
|
|
train_data_augmented = reward_model.estimate(train_data) |
|
|
|
|
|
log_vars = learner.train(train_data_augmented, collector.envstep) |
|
|
|
if cfg.policy.use_priority: |
|
replay_buffer.update_priority(train_data, log_vars[0]['value_priority_orig']) |
|
|
|
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: |
|
break |
|
|
|
|
|
learner.call_hook('after_run') |
|
return policy |
|
|