|
from easydict import EasyDict |
|
import pytest |
|
import gymnasium as gym |
|
import numpy as np |
|
|
|
from ding.envs import DingEnvWrapper |
|
|
|
|
|
@pytest.mark.unittest |
|
class TestDingEnvWrapper: |
|
|
|
def test(self): |
|
env_id = 'Pendulum-v1' |
|
env = gym.make(env_id) |
|
ding_env = DingEnvWrapper(env=env) |
|
print(ding_env.observation_space, ding_env.action_space, ding_env.reward_space) |
|
cfg = EasyDict(dict( |
|
collector_env_num=16, |
|
evaluator_env_num=3, |
|
is_train=True, |
|
)) |
|
l1 = ding_env.create_collector_env_cfg(cfg) |
|
assert isinstance(l1, list) |
|
l1 = ding_env.create_evaluator_env_cfg(cfg) |
|
assert isinstance(l1, list) |
|
|
|
obs = ding_env.reset() |
|
|
|
assert isinstance(obs[0], np.ndarray) |
|
action = ding_env.random_action() |
|
print('random_action: {}, action_space: {}'.format(action.shape, ding_env.action_space)) |
|
|