gomoku / LightZero /lzero /mcts /buffer /game_buffer_efficientzero.py
zjowowen's picture
init space
079c32c
raw
history blame
24.2 kB
from typing import Any, List
import numpy as np
import torch
from ding.utils import BUFFER_REGISTRY
from lzero.mcts.tree_search.mcts_ctree import EfficientZeroMCTSCtree as MCTSCtree
from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree
from lzero.mcts.utils import prepare_observation
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform
from .game_buffer_muzero import MuZeroGameBuffer
@BUFFER_REGISTRY.register('game_buffer_efficientzero')
class EfficientZeroGameBuffer(MuZeroGameBuffer):
"""
Overview:
The specific game buffer for EfficientZero policy.
"""
def __init__(self, cfg: dict):
super().__init__(cfg)
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
self.keep_ratio = 1
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
def sample(self, batch_size: int, policy: Any) -> List[Any]:
"""
Overview:
sample data from ``GameBuffer`` and prepare the current and target batch for training
Arguments:
- batch_size (:obj:`int`): batch size
- policy (:obj:`torch.tensor`): model of policy
Returns:
- train_data (:obj:`List`): List of train data
"""
policy._target_model.to(self._cfg.device)
policy._target_model.eval()
# obtain the current_batch and prepare target context
reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch(
batch_size, self._cfg.reanalyze_ratio
)
# target value_prefixs, target value
batch_value_prefixs, batch_target_values = self._compute_target_reward_value(
reward_value_context, policy._target_model
)
# target policy
batch_target_policies_re = self._compute_target_policy_reanalyzed(policy_re_context, policy._target_model)
batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed(
policy_non_re_context, self._cfg.model.action_space_size
)
if 0 < self._cfg.reanalyze_ratio < 1:
batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re])
elif self._cfg.reanalyze_ratio == 1:
batch_target_policies = batch_target_policies_re
elif self._cfg.reanalyze_ratio == 0:
batch_target_policies = batch_target_policies_non_re
target_batch = [batch_value_prefixs, batch_target_values, batch_target_policies]
# a batch contains the current_batch and the target_batch
train_data = [current_batch, target_batch]
return train_data
def _prepare_reward_value_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any],
total_transitions: int
) -> List[Any]:
"""
Overview:
prepare the context of rewards and values for calculating TD value target in reanalyzing part.
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment
- total_transitions (:obj:`int`): number of collected transitions
Returns:
- reward_value_context (:obj:`list`): value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens,
td_steps_list, action_mask_segment, to_play_segment
"""
zero_obs = game_segment_list[0].zero_obs()
value_obs_list = []
# the value is valid or not (out of trajectory)
value_mask = []
rewards_list = []
game_segment_lens = []
# for two_player board games
action_mask_segment, to_play_segment = [], []
td_steps_list = []
for game_segment, state_index, idx in zip(game_segment_list, pos_in_game_segment_list, batch_index_list):
game_segment_len = len(game_segment)
game_segment_lens.append(game_segment_len)
# ==============================================================
# EfficientZero related core code
# ==============================================================
# TODO(pu):
# for atari, off-policy correction: shorter horizon of td steps
# delta_td = (total_transitions - idx) // config.auto_td_steps
# td_steps = config.td_steps - delta_td
# td_steps = np.clip(td_steps, 1, 5).astype(np.int)
td_steps = np.clip(self._cfg.td_steps, 1, max(1, game_segment_len - state_index)).astype(np.int32)
# prepare the corresponding observations for bootstrapped values o_{t+k}
# o[t+ td_steps, t + td_steps + stack frames + num_unroll_steps]
# t=2+3 -> o[2+3, 2+3+4+5] -> o[5, 14]
game_obs = game_segment.get_unroll_obs(state_index + td_steps, self._cfg.num_unroll_steps)
rewards_list.append(game_segment.reward_segment)
# for two_player board games
action_mask_segment.append(game_segment.action_mask_segment)
to_play_segment.append(game_segment.to_play_segment)
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
# get the <num_unroll_steps+1> bootstrapped target obs
td_steps_list.append(td_steps)
# index of bootstrapped obs o_{t+td_steps}
bootstrap_index = current_index + td_steps
if bootstrap_index < game_segment_len:
value_mask.append(1)
# beg_index = bootstrap_index - (state_index + td_steps), max of beg_index is num_unroll_steps
beg_index = current_index - state_index
end_index = beg_index + self._cfg.model.frame_stack_num
# the stacked obs in time t
obs = game_obs[beg_index:end_index]
else:
value_mask.append(0)
obs = zero_obs
value_obs_list.append(obs)
reward_value_context = [
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list,
action_mask_segment, to_play_segment
]
return reward_value_context
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]:
"""
Overview:
prepare reward and value targets from the context of rewards and values.
Arguments:
- reward_value_context (:obj:'list'): the reward value context
- model (:obj:'torch.tensor'):model of the target model
Returns:
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
- batch_target_values (:obj:'np.ndarray): batch of value estimation
"""
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \
to_play_segment = reward_value_context # noqa
# transition_batch_size = game_segment_batch_size * (num_unroll_steps+1)
transition_batch_size = len(value_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
# ==============================================================
# EfficientZero related core code
# ==============================================================
batch_target_values, batch_value_prefixs = [], []
with torch.no_grad():
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float()
# calculate the target value
m_output = model.initial_inference(m_obs)
if not model.training:
# ==============================================================
# EfficientZero related core code
# ==============================================================
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
# concat the output slices after model inference
if self._cfg.use_root_value:
# use the root values from MCTS, as in EfficiientZero
# the root values have limited improvement but require much more GPU actors;
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(
roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
)
roots_values = roots.get_values()
value_list = np.array(roots_values)
else:
# use the predicted values
value_list = concat_output_value(network_output)
# get last state value
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
value_list = value_list.reshape(-1) * np.array(
[
self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) %
2 == 0 else -self._cfg.discount_factor ** td_steps_list[i]
for i in range(transition_batch_size)
]
)
else:
value_list = value_list.reshape(-1) * (
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list
)
value_list = value_list * np.array(value_mask)
value_list = value_list.tolist()
horizon_id, value_index = 0, 0
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list,
pos_in_game_segment_list,
to_play_segment):
target_values = []
target_value_prefixs = []
value_prefix = 0.0
base_index = state_index
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
bootstrap_index = current_index + td_steps_list[value_index]
for i, reward in enumerate(reward_list[current_index:bootstrap_index]):
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
if to_play_list[base_index] == to_play_list[i]:
value_list[value_index] += reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += -reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += reward * self._cfg.discount_factor ** i
# reset every lstm_horizon_len
if horizon_id % self._cfg.lstm_horizon_len == 0:
value_prefix = 0.0
base_index = current_index
horizon_id += 1
if current_index < game_segment_len_non_re:
target_values.append(value_list[value_index])
# TODO: Since the horizon is small and the discount_factor is close to 1.
# Compute the reward sum to approximate the value prefix for simplification
value_prefix += reward_list[current_index
] # * self._cfg.discount_factor ** (current_index - base_index)
target_value_prefixs.append(value_prefix)
else:
target_values.append(0)
target_value_prefixs.append(value_prefix)
value_index += 1
batch_value_prefixs.append(target_value_prefixs)
batch_target_values.append(target_values)
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object)
batch_target_values = np.asarray(batch_target_values, dtype=object)
return batch_value_prefixs, batch_target_values
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
"""
Overview:
prepare policy targets from the reanalyzed context of policies
Arguments:
- policy_re_context (:obj:`List`): List of policy context to reanalyzed
Returns:
- batch_target_policies_re
"""
if policy_re_context is None:
return []
batch_target_policies_re = []
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \
to_play_segment = policy_re_context # noqa
# transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
transition_batch_size = len(policy_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
with torch.no_grad():
policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float()
m_output = model.initial_inference(m_obs)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(
roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
)
roots_legal_actions_list = legal_actions
roots_distributions = roots.get_distributions()
policy_index = 0
for state_index, game_index in zip(pos_in_game_segment_list, batch_index_list):
target_policies = []
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
distributions = roots_distributions[policy_index]
if policy_mask[policy_index] == 0:
# NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0
target_policies.append([0 for _ in range(self._cfg.model.action_space_size)])
else:
if distributions is None:
# if at some obs, the legal_action is None, add the fake target_policy
target_policies.append(
list(np.ones(self._cfg.model.action_space_size) / self._cfg.model.action_space_size)
)
else:
if self._cfg.mcts_ctree:
# cpp mcts_tree
if self._cfg.action_type == 'fixed_action_space':
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for two_player board games
policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
else:
# python mcts_tree
if self._cfg.action_type == 'fixed_action_space':
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for two_player board games
policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
policy_index += 1
batch_target_policies_re.append(target_policies)
batch_target_policies_re = np.array(batch_target_policies_re)
return batch_target_policies_re