gomoku / LightZero /lzero /reward_model /rnd_reward_model.py
zjowowen's picture
init space
079c32c
raw
history blame
18 kB
import copy
import random
from typing import Union, Tuple, List, Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.model import FCEncoder, ConvEncoder
from ding.reward_model.base_reward_model import BaseRewardModel
from ding.torch_utils.data_helper import to_tensor
from ding.utils import RunningMeanStd
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY
from easydict import EasyDict
class RNDNetwork(nn.Module):
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None:
super(RNDNetwork, self).__init__()
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.target = FCEncoder(obs_shape, hidden_size_list)
self.predictor = FCEncoder(obs_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.target = ConvEncoder(obs_shape, hidden_size_list)
self.predictor = ConvEncoder(obs_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
format(obs_shape)
)
for param in self.target.parameters():
param.requires_grad = False
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
predict_feature = self.predictor(obs)
with torch.no_grad():
target_feature = self.target(obs)
return predict_feature, target_feature
class RNDNetworkRepr(nn.Module):
"""
Overview:
The RND reward model class (https://arxiv.org/abs/1810.12894v1) with representation network.
"""
def __init__(self, obs_shape: Union[int, SequenceType], latent_shape: Union[int, SequenceType], hidden_size_list: SequenceType,
representation_network) -> None:
super(RNDNetworkRepr, self).__init__()
self.representation_network = representation_network
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.target = FCEncoder(obs_shape, hidden_size_list)
self.predictor = FCEncoder(latent_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.target = ConvEncoder(obs_shape, hidden_size_list)
self.predictor = ConvEncoder(latent_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
format(obs_shape)
)
for param in self.target.parameters():
param.requires_grad = False
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
predict_feature = self.predictor(self.representation_network(obs))
with torch.no_grad():
target_feature = self.target(obs)
return predict_feature, target_feature
@REWARD_MODEL_REGISTRY.register('rnd_muzero')
class RNDRewardModel(BaseRewardModel):
"""
Overview:
The RND reward model class (https://arxiv.org/abs/1810.12894v1) modified for MuZero.
Interface:
``estimate``, ``train``, ``collect_data``, ``clear_data``, \
``__init__``, ``_train``, ``load_state_dict``, ``state_dict``
Config:
== ==================== ===== ============= ======================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ===== ============= ======================================= =======================
1 ``type`` str rnd | Reward model register name, refer |
| to registry ``REWARD_MODEL_REGISTRY`` |
2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new
| ``reward_type`` | | , or assign
3 | ``learning_rate`` float 0.001 | The step size of gradient descent |
4 | ``batch_size`` int 64 | Training batch size |
5 | ``hidden`` list [64, 64, | the MLP layer shape |
| ``_size_list`` (int) 128] | |
6 | ``update_per_`` int 100 | Number of updates per collect |
| ``collect`` | |
7 | ``input_norm`` bool True | Observation normalization |
8 | ``input_norm_`` int 0 | min clip value for obs normalization |
| ``clamp_min``
9 | ``input_norm_`` int 1 | max clip value for obs normalization |
| ``clamp_max``
10 | ``intrinsic_`` float 0.01 | the weight of intrinsic reward | r = w*r_i + r_e
``reward_weight``
11 | ``extrinsic_`` bool True | Whether to normlize extrinsic reward
``reward_norm``
12 | ``extrinsic_`` int 1 | the upper bound of the reward
``reward_norm_max`` | normalization
== ==================== ===== ============= ======================================= =======================
"""
config = dict(
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
type='rnd',
# (str) The intrinsic reward type, including add, new, or assign.
intrinsic_reward_type='add',
# (float) The step size of gradient descent.
learning_rate=1e-3,
# (float) Batch size.
batch_size=64,
# (list(int)) Sequence of ``hidden_size`` of reward network.
# If obs.shape == 1, use MLP layers.
# If obs.shape == 3, use conv layer and final dense layer.
hidden_size_list=[64, 64, 128],
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=100,
# (bool) Observation normalization: transform obs to mean 0, std 1.
input_norm=True,
# (int) Min clip value for observation normalization.
input_norm_clamp_min=-1,
# (int) Max clip value for observation normalization.
input_norm_clamp_max=1,
# Means the relative weight of RND intrinsic_reward.
# (float) The weight of intrinsic reward
# r = intrinsic_reward_weight * r_i + r_e.
intrinsic_reward_weight=0.01,
# (bool) Whether to normalize extrinsic reward.
# Normalize the reward to [0, extrinsic_reward_norm_max].
extrinsic_reward_norm=True,
# (int) The upper bound of the reward normalization.
extrinsic_reward_norm_max=1,
)
def __init__(self, config: EasyDict, device: str = 'cpu', tb_logger: 'SummaryWriter' = None,
representation_network: nn.Module = None, target_representation_network: nn.Module = None,
use_momentum_representation_network: bool = True) -> None: # noqa
super(RNDRewardModel, self).__init__()
self.cfg = config
self.representation_network = representation_network
self.target_representation_network = target_representation_network
self.use_momentum_representation_network = use_momentum_representation_network
self.input_type = self.cfg.input_type
assert self.input_type in ['obs', 'latent_state', 'obs_latent_state'], self.input_type
self.device = device
assert self.device == "cpu" or self.device.startswith("cuda")
self.rnd_buffer_size = config.rnd_buffer_size
self.intrinsic_reward_type = self.cfg.intrinsic_reward_type
if tb_logger is None:
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter('rnd_reward_model')
self.tb_logger = tb_logger
if self.input_type == 'obs':
self.input_shape = self.cfg.obs_shape
self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device)
elif self.input_type == 'latent_state':
self.input_shape = self.cfg.latent_state_dim
self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device)
elif self.input_type == 'obs_latent_state':
if self.use_momentum_representation_network:
self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1],
self.target_representation_network).to(self.device)
else:
self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1],
self.representation_network).to(self.device)
assert self.intrinsic_reward_type in ['add', 'new', 'assign']
if self.input_type in ['obs', 'obs_latent_state']:
self.train_obs = []
if self.input_type == 'latent_state':
self.train_latent_state = []
self._optimizer_rnd = torch.optim.Adam(
self.reward_model.predictor.parameters(), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay
)
self._running_mean_std_rnd_reward = RunningMeanStd(epsilon=1e-4)
self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4)
self.estimate_cnt_rnd = 0
self.train_cnt_rnd = 0
def _train_with_data_one_step(self) -> None:
if self.input_type in ['obs', 'obs_latent_state']:
train_data = random.sample(self.train_obs, self.cfg.batch_size)
elif self.input_type == 'latent_state':
train_data = random.sample(self.train_latent_state, self.cfg.batch_size)
train_data = torch.stack(train_data).to(self.device)
if self.cfg.input_norm:
# Note: observation normalization: transform obs to mean 0, std 1
self._running_mean_std_rnd_obs.update(train_data.detach().cpu().numpy())
normalized_train_data = (train_data - to_tensor(self._running_mean_std_rnd_obs.mean).to(
self.device)) / to_tensor(
self._running_mean_std_rnd_obs.std
).to(self.device)
train_data = torch.clamp(normalized_train_data, min=self.cfg.input_norm_clamp_min,
max=self.cfg.input_norm_clamp_max)
predict_feature, target_feature = self.reward_model(train_data)
loss = F.mse_loss(predict_feature, target_feature)
self.tb_logger.add_scalar('rnd_reward_model/rnd_mse_loss', loss, self.train_cnt_rnd)
self._optimizer_rnd.zero_grad()
loss.backward()
self._optimizer_rnd.step()
def train_with_data(self) -> None:
for _ in range(self.cfg.update_per_collect):
# for name, param in self.reward_model.named_parameters():
# if param.grad is not None:
# print(f"{name}: {torch.isnan(param.grad).any()}, {torch.isinf(param.grad).any()}")
# print(f"{name}: grad min: {param.grad.min()}, grad max: {param.grad.max()}")
# # enable the following line to check whether there is nan or inf in the gradient.
# torch.autograd.set_detect_anomaly(True)
self._train_with_data_one_step()
self.train_cnt_rnd += 1
def estimate(self, data: list) -> List[Dict]:
"""
Rewrite the reward key in each row of the data.
"""
# current_batch, target_batch = data
# obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch
# target_reward, target_value, target_policy = target_batch
obs_batch_orig = data[0][0]
target_reward = data[1][0]
batch_size = obs_batch_orig.shape[0]
# reshape to (4, 2835, 6)
obs_batch_tmp = np.reshape(obs_batch_orig, (batch_size, self.cfg.obs_shape, 6))
# reshape to (24, 2835)
obs_batch_tmp = np.reshape(obs_batch_tmp, (batch_size * 6, self.cfg.obs_shape))
if self.input_type == 'latent_state':
with torch.no_grad():
latent_state = self.representation_network(torch.from_numpy(obs_batch_tmp).to(self.device))
input_data = latent_state
elif self.input_type in ['obs', 'obs_latent_state']:
input_data = to_tensor(obs_batch_tmp).to(self.device)
# NOTE: deepcopy reward part of data is very important,
# otherwise the reward of data in the replay buffer will be incorrectly modified.
target_reward_augmented = copy.deepcopy(target_reward)
target_reward_augmented = np.reshape(target_reward_augmented, (batch_size * 6, 1))
if self.cfg.input_norm:
# add this line to avoid inplace operation on the original tensor.
input_data = input_data.clone()
# Note: observation normalization: transform obs to mean 0, std 1
input_data = (input_data - to_tensor(self._running_mean_std_rnd_obs.mean
).to(self.device)) / to_tensor(self._running_mean_std_rnd_obs.std).to(
self.device)
input_data = torch.clamp(input_data, min=self.cfg.input_norm_clamp_min, max=self.cfg.input_norm_clamp_max)
else:
input_data = input_data
with torch.no_grad():
predict_feature, target_feature = self.reward_model(input_data)
mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
self._running_mean_std_rnd_reward.update(mse.detach().cpu().numpy())
# Note: according to the min-max normalization, transform rnd reward to [0,1]
rnd_reward = (mse - mse.min()) / (mse.max() - mse.min() + 1e-6)
# save the rnd_reward statistics into tb_logger
self.estimate_cnt_rnd += 1
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_std', rnd_reward.std(), self.estimate_cnt_rnd)
rnd_reward = rnd_reward.to(self.device).unsqueeze(1).cpu().numpy()
if self.intrinsic_reward_type == 'add':
if self.cfg.extrinsic_reward_norm:
target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max + rnd_reward * self.cfg.intrinsic_reward_weight
else:
target_reward_augmented = target_reward_augmented + rnd_reward * self.cfg.intrinsic_reward_weight
elif self.intrinsic_reward_type == 'new':
if self.cfg.extrinsic_reward_norm:
target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max
elif self.intrinsic_reward_type == 'assign':
target_reward_augmented = rnd_reward
self.tb_logger.add_scalar('augmented_reward/reward_max', np.max(target_reward_augmented), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_mean', np.mean(target_reward_augmented),
self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_min', np.min(target_reward_augmented), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('augmented_reward/reward_std', np.std(target_reward_augmented), self.estimate_cnt_rnd)
# reshape to (target_reward_augmented.shape[0], 6, 1)
target_reward_augmented = np.reshape(target_reward_augmented, (batch_size, 6, 1))
data[1][0] = target_reward_augmented
train_data_augmented = data
return train_data_augmented
def collect_data(self, data: list) -> None:
# TODO(pu): now we only collect the first 300 steps of each game segment.
collected_transitions = np.concatenate([game_segment.obs_segment[:300] for game_segment in data[0]], axis=0)
if self.input_type == 'latent_state':
with torch.no_grad():
self.train_latent_state.extend(
self.representation_network(torch.from_numpy(collected_transitions).to(self.device)))
elif self.input_type == 'obs':
self.train_obs.extend(to_tensor(collected_transitions).to(self.device))
elif self.input_type == 'obs_latent_state':
self.train_obs.extend(to_tensor(collected_transitions).to(self.device))
def clear_old_data(self) -> None:
if self.input_type == 'latent_state':
if len(self.train_latent_state) >= self.cfg.rnd_buffer_size:
self.train_latent_state = self.train_latent_state[-self.cfg.rnd_buffer_size:]
elif self.input_type == 'obs':
if len(self.train_obs) >= self.cfg.rnd_buffer_size:
self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:]
elif self.input_type == 'obs_latent_state':
if len(self.train_obs) >= self.cfg.rnd_buffer_size:
self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:]
def state_dict(self) -> Dict:
return self.reward_model.state_dict()
def load_state_dict(self, _state_dict: Dict) -> None:
self.reward_model.load_state_dict(_state_dict)
def clear_data(self):
pass
def train(self):
pass