zjowowen's picture
init space
079c32c
raw
history blame
2.98 kB
# According to the model you want to evaluate, import the corresponding config.
import numpy as np
from lzero.entry import eval_muzero
from zoo.game_2048.config.muzero_2048_config import main_config, create_config
from zoo.game_2048.config.stochastic_muzero_2048_config import main_config, create_config
if __name__ == "__main__":
"""
Entry point for the evaluation of the muzero or stochastic_muzero model on the 2048 environment.
Variables:
- model_path (:obj:`Optional[str]`): The pretrained model path, which should point to the ckpt file of the
pretrained model. An absolute path is recommended. In LightZero, the path is usually something like
``exp_name/ckpt/ckpt_best.pth.tar``.
- returns_mean_seeds (:obj:`List[float]`): List to store the mean returns for each seed.
- returns_seeds (:obj:`List[float]`): List to store the returns for each seed.
- seeds (:obj:`List[int]`): List of seeds for the environment.
- num_episodes_each_seed (:obj:`int`): Number of episodes to run for each seed.
- total_test_episodes (:obj:`int`): Total number of test episodes, computed as the product of the number of
seeds and the number of episodes per seed.
"""
# model_path = './ckpt/ckpt_best.pth.tar'
model_path = None
returns_mean_seeds = []
returns_seeds = []
seeds = [0]
num_episodes_each_seed = 1
# main_config.env.render_mode = 'image_realtime_mode'
main_config.env.render_mode = 'image_savefile_mode'
main_config.env.replay_path = './video'
main_config.env.replay_format = 'gif'
main_config.env.replay_name_suffix = 'muzero_ns100_s0'
# main_config.env.replay_name_suffix = 'stochastic_muzero_ns100_s0'
main_config.env.max_episode_steps = int(1e9) # Adjust according to different environments
total_test_episodes = num_episodes_each_seed * len(seeds)
create_config.env_manager.type = 'base' # Visualization requires the 'type' to be set as base
main_config.env.evaluator_env_num = 1 # Visualization requires the 'env_num' to be set as 1
main_config.env.n_evaluator_episode = total_test_episodes
for seed in seeds:
returns_mean, returns = eval_muzero(
[main_config, create_config],
seed=seed,
num_episodes_each_seed=num_episodes_each_seed,
print_seed_details=False,
model_path=model_path
)
print(returns_mean, returns)
returns_mean_seeds.append(returns_mean)
returns_seeds.append(returns)
returns_mean_seeds = np.array(returns_mean_seeds)
returns_seeds = np.array(returns_seeds)
print("=" * 20)
print(f'We eval total {len(seeds)} seeds. In each seed, we eval {num_episodes_each_seed} episodes.')
print(f'In seeds {seeds}, returns_mean_seeds is {returns_mean_seeds}, returns is {returns_seeds}')
print('In all seeds, reward_mean:', returns_mean_seeds.mean())
print("=" * 20)