|
from easydict import EasyDict |
|
import ding.envs.gym_env |
|
|
|
cfg = dict( |
|
exp_name='Pendulum-v1-PG', |
|
seed=0, |
|
env=dict( |
|
env_id='Pendulum-v1', |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
n_evaluator_episode=5, |
|
stop_value=-200, |
|
act_scale=True, |
|
), |
|
policy=dict( |
|
cuda=False, |
|
action_space='continuous', |
|
model=dict( |
|
action_space='continuous', |
|
obs_shape=3, |
|
action_shape=1, |
|
), |
|
learn=dict( |
|
batch_size=4000, |
|
learning_rate=0.001, |
|
entropy_weight=0.001, |
|
), |
|
collect=dict( |
|
n_episode=20, |
|
unroll_len=1, |
|
discount_factor=0.99, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=1, )) |
|
), |
|
wandb_logger=dict( |
|
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False |
|
), |
|
) |
|
|
|
cfg = EasyDict(cfg) |
|
|
|
env = ding.envs.gym_env.env |
|
|