|
from easydict import EasyDict |
|
import ding.envs.gym_env |
|
|
|
cfg = dict( |
|
exp_name='BipedalWalker-v3-SAC', |
|
seed=0, |
|
env=dict( |
|
env_id='BipedalWalker-v3', |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
n_evaluator_episode=5, |
|
act_scale=True, |
|
rew_clip=True, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
random_collect_size=10000, |
|
model=dict( |
|
obs_shape=24, |
|
action_shape=4, |
|
twin_critic=True, |
|
action_space='reparameterization', |
|
actor_head_hidden_size=128, |
|
critic_head_hidden_size=128, |
|
), |
|
learn=dict( |
|
update_per_collect=64, |
|
batch_size=256, |
|
learning_rate_q=0.0003, |
|
learning_rate_policy=0.0003, |
|
learning_rate_alpha=0.0003, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
auto_alpha=True, |
|
learner=dict(hook=dict(log_show_after_iter=1000, )) |
|
), |
|
collect=dict(n_sample=64, ), |
|
other=dict(replay_buffer=dict(replay_buffer_size=300000, ), ), |
|
), |
|
wandb_logger=dict( |
|
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False |
|
), |
|
) |
|
|
|
cfg = EasyDict(cfg) |
|
|
|
env = ding.envs.gym_env.env |
|
|