|
from easydict import EasyDict |
|
import ding.envs.gym_env |
|
|
|
cfg = dict( |
|
exp_name='Walker2d-v3-SAC', |
|
seed=0, |
|
env=dict( |
|
env_id='Walker2d-v3', |
|
collector_env_num=1, |
|
evaluator_env_num=8, |
|
n_evaluator_episode=8, |
|
stop_value=6000, |
|
env_wrapper='mujoco_default', |
|
), |
|
policy=dict( |
|
cuda=True, |
|
random_collect_size=10000, |
|
model=dict( |
|
obs_shape=17, |
|
action_shape=6, |
|
twin_critic=True, |
|
action_space='reparameterization', |
|
actor_head_hidden_size=256, |
|
critic_head_hidden_size=256, |
|
), |
|
learn=dict( |
|
update_per_collect=1, |
|
batch_size=256, |
|
learning_rate_q=1e-3, |
|
learning_rate_policy=1e-3, |
|
learning_rate_alpha=3e-4, |
|
ignore_done=False, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
alpha=0.2, |
|
reparameterization=True, |
|
auto_alpha=False, |
|
), |
|
collect=dict( |
|
n_sample=1, |
|
unroll_len=1, |
|
), |
|
command=dict(), |
|
eval=dict(), |
|
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), |
|
), |
|
wandb_logger=dict( |
|
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False |
|
), |
|
) |
|
|
|
cfg = EasyDict(cfg) |
|
|
|
env = ding.envs.gym_env.env |
|
|