gomoku / DI-engine /ding /data /shm_buffer.py
zjowowen's picture
init space
079c32c
raw
history blame
5.01 kB
from typing import Any, Optional, Union, Tuple, Dict
from multiprocessing import Array
import ctypes
import numpy as np
import torch
_NTYPE_TO_CTYPE = {
np.bool_: ctypes.c_bool,
np.uint8: ctypes.c_uint8,
np.uint16: ctypes.c_uint16,
np.uint32: ctypes.c_uint32,
np.uint64: ctypes.c_uint64,
np.int8: ctypes.c_int8,
np.int16: ctypes.c_int16,
np.int32: ctypes.c_int32,
np.int64: ctypes.c_int64,
np.float32: ctypes.c_float,
np.float64: ctypes.c_double,
}
class ShmBuffer():
"""
Overview:
Shared memory buffer to store numpy array.
"""
def __init__(
self,
dtype: Union[type, np.dtype],
shape: Tuple[int],
copy_on_get: bool = True,
ctype: Optional[type] = None
) -> None:
"""
Overview:
Initialize the buffer.
Arguments:
- dtype (:obj:`Union[type, np.dtype]`): The dtype of the data to limit the size of the buffer.
- shape (:obj:`Tuple[int]`): The shape of the data to limit the size of the buffer.
- copy_on_get (:obj:`bool`): Whether to copy data when calling get method.
- ctype (:obj:`Optional[type]`): Origin class type, e.g. np.ndarray, torch.Tensor.
"""
if isinstance(dtype, np.dtype): # it is type of gym.spaces.dtype
dtype = dtype.type
self.buffer = Array(_NTYPE_TO_CTYPE[dtype], int(np.prod(shape)))
self.dtype = dtype
self.shape = shape
self.copy_on_get = copy_on_get
self.ctype = ctype
def fill(self, src_arr: np.ndarray) -> None:
"""
Overview:
Fill the shared memory buffer with a numpy array. (Replace the original one.)
Arguments:
- src_arr (:obj:`np.ndarray`): array to fill the buffer.
"""
assert isinstance(src_arr, np.ndarray), type(src_arr)
# for np.array with shape (4, 84, 84) and float32 dtype, reshape is 15~20x faster than flatten
# for np.array with shape (4, 84, 84) and uint8 dtype, reshape is 5~7x faster than flatten
# so we reshape dst_arr rather than flatten src_arr
dst_arr = np.frombuffer(self.buffer.get_obj(), dtype=self.dtype).reshape(self.shape)
np.copyto(dst_arr, src_arr)
def get(self) -> np.ndarray:
"""
Overview:
Get the array stored in the buffer.
Return:
- data (:obj:`np.ndarray`): A copy of the data stored in the buffer.
"""
data = np.frombuffer(self.buffer.get_obj(), dtype=self.dtype).reshape(self.shape)
if self.copy_on_get:
data = data.copy() # must use np.copy, torch.from_numpy and torch.as_tensor still use the same memory
if self.ctype is torch.Tensor:
data = torch.from_numpy(data)
return data
class ShmBufferContainer(object):
"""
Overview:
Support multiple shared memory buffers. Each key-value is name-buffer.
"""
def __init__(
self,
dtype: Union[Dict[Any, type], type, np.dtype],
shape: Union[Dict[Any, tuple], tuple],
copy_on_get: bool = True
) -> None:
"""
Overview:
Initialize the buffer container.
Arguments:
- dtype (:obj:`Union[type, np.dtype]`): The dtype of the data to limit the size of the buffer.
- shape (:obj:`Union[Dict[Any, tuple], tuple]`): If `Dict[Any, tuple]`, use a dict to manage \
multiple buffers; If `tuple`, use single buffer.
- copy_on_get (:obj:`bool`): Whether to copy data when calling get method.
"""
if isinstance(shape, dict):
self._data = {k: ShmBufferContainer(dtype[k], v, copy_on_get) for k, v in shape.items()}
elif isinstance(shape, (tuple, list)):
self._data = ShmBuffer(dtype, shape, copy_on_get)
else:
raise RuntimeError("not support shape: {}".format(shape))
self._shape = shape
def fill(self, src_arr: Union[Dict[Any, np.ndarray], np.ndarray]) -> None:
"""
Overview:
Fill the one or many shared memory buffer.
Arguments:
- src_arr (:obj:`Union[Dict[Any, np.ndarray], np.ndarray]`): array to fill the buffer.
"""
if isinstance(self._shape, dict):
for k in self._shape.keys():
self._data[k].fill(src_arr[k])
elif isinstance(self._shape, (tuple, list)):
self._data.fill(src_arr)
def get(self) -> Union[Dict[Any, np.ndarray], np.ndarray]:
"""
Overview:
Get the one or many arrays stored in the buffer.
Return:
- data (:obj:`np.ndarray`): The array(s) stored in the buffer.
"""
if isinstance(self._shape, dict):
return {k: self._data[k].get() for k in self._shape.keys()}
elif isinstance(self._shape, (tuple, list)):
return self._data.get()