gomoku / DI-engine /ding /entry /dist_entry.py
zjowowen's picture
init space
079c32c
raw
history blame
11.7 kB
import os
import sys
import subprocess
import signal
import pickle
from ditk import logging
import time
from threading import Thread
from easydict import EasyDict
import numpy as np
from ding.worker import Coordinator, create_comm_collector, create_comm_learner, LearnerAggregator
from ding.config import read_config_with_system, compile_config_parallel
from ding.utils import set_pkg_seed, DEFAULT_K8S_AGGREGATOR_SLAVE_PORT, pod_exec_command
def dist_prepare_config(
filename: str,
seed: int,
platform: str,
coordinator_host: str,
learner_host: str,
collector_host: str,
coordinator_port: int,
learner_port: int,
collector_port,
) -> str:
set_pkg_seed(seed)
main_cfg, create_cfg, system_cfg = read_config_with_system(filename)
config = compile_config_parallel(
main_cfg,
create_cfg=create_cfg,
system_cfg=system_cfg,
seed=seed,
platform=platform,
coordinator_host=coordinator_host,
learner_host=learner_host,
collector_host=collector_host,
coordinator_port=coordinator_port,
learner_port=learner_port,
collector_port=collector_port,
)
# Pickle dump config to disk for later use.
real_filename = filename + '.pkl'
with open(real_filename, 'wb') as f:
pickle.dump(config, f)
return real_filename
def dist_launch_coordinator(
filename: str,
seed: int,
coordinator_port: int,
disable_flask_log: bool,
enable_total_log: bool = False
) -> None:
set_pkg_seed(seed)
# Disable some part of DI-engine log
if not enable_total_log:
coordinator_log = logging.getLogger('coordinator_logger')
coordinator_log.disabled = True
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
with open(filename, 'rb') as f:
config = pickle.load(f)
# CLI > ENV VARIABLE > CONFIG
if coordinator_port is not None:
config.system.coordinator.port = coordinator_port
elif os.environ.get('COORDINATOR_PORT', None):
port = os.environ['COORDINATOR_PORT']
if port.isdigit():
config.system.coordinator.port = int(port)
else: # use config pre-defined value
assert 'port' in config.system.coordinator and np.isscalar(config.system.coordinator.port)
coordinator = Coordinator(config)
coordinator.start()
# Monitor thread: Coordinator will remain running until its ``system_shutdown_flag`` is set to False.
def shutdown_monitor():
while True:
time.sleep(3)
if coordinator.system_shutdown_flag:
coordinator.close()
break
shutdown_monitor_thread = Thread(target=shutdown_monitor, args=(), daemon=True, name='shutdown_monitor')
shutdown_monitor_thread.start()
shutdown_monitor_thread.join()
print("[DI-engine dist pipeline]Your RL agent is converged, you can refer to 'log' and 'tensorboard' for details")
def dist_launch_learner(
filename: str, seed: int, learner_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if name is None:
name = 'learner'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
# CLI > ENV VARIABLE > CONFIG
if learner_port is not None:
config.port = learner_port
elif os.environ.get('LEARNER_PORT', None):
port = os.environ['LEARNER_PORT']
if port.isdigit():
config.port = int(port)
else: # use config pre-defined value
assert 'port' in config and np.isscalar(config.port)
learner = create_comm_learner(config)
learner.start()
def dist_launch_collector(
filename: str, seed: int, collector_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if name is None:
name = 'collector'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
# CLI > ENV VARIABLE > CONFIG
if collector_port is not None:
config.port = collector_port
elif os.environ.get('COLLECTOR_PORT', None):
port = os.environ['COLLECTOR_PORT']
if port.isdigit():
config.port = int(port)
else: # use config pre-defined value
assert 'port' in config and np.isscalar(config.port)
collector = create_comm_collector(config)
collector.start()
def dist_launch_learner_aggregator(
filename: str,
seed: int,
aggregator_host: str,
aggregator_port: int,
name: str = None,
disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if filename is not None:
if name is None:
name = 'learner_aggregator'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
else:
# start without config (create a fake one)
host, port = aggregator_host, DEFAULT_K8S_AGGREGATOR_SLAVE_PORT
if aggregator_port is not None:
port = aggregator_port
elif os.environ.get('AGGREGATOR_PORT', None):
_port = os.environ['AGGREGATOR_PORT']
if _port.isdigit():
port = int(_port)
config = dict(
master=dict(host=host, port=port + 1),
slave=dict(host=host, port=port + 0),
learner={},
)
config = EasyDict(config)
learner_aggregator = LearnerAggregator(config)
learner_aggregator.start()
def dist_launch_spawn_learner(
filename: str, seed: int, learner_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
current_env = os.environ.copy()
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
processes = []
for local_rank in range(0, local_world_size):
dist_rank = int(os.environ.get('START_RANK', 0)) + local_rank
current_env["RANK"] = str(dist_rank)
current_env["LOCAL_RANK"] = str(local_rank)
executable = subprocess.getoutput('which ding')
assert len(executable) > 0, "cannot find executable \"ding\""
cmd = [executable, '-m', 'dist', '--module', 'learner']
if filename is not None:
cmd += ['-c', f'{filename}']
if seed is not None:
cmd += ['-s', f'{seed}']
if learner_port is not None:
cmd += ['-lp', f'{learner_port}']
if name is not None:
cmd += ['--module-name', f'{name}']
if disable_flask_log is not None:
cmd += ['--disable-flask-log', f'{int(disable_flask_log)}']
sig_names = {2: "SIGINT", 15: "SIGTERM"}
last_return_code = None
def sigkill_handler(signum, frame):
for process in processes:
print(f"Killing subprocess {process.pid}")
try:
process.kill()
except Exception:
pass
if last_return_code is not None:
raise subprocess.CalledProcessError(returncode=last_return_code, cmd=cmd)
if signum in sig_names:
print(f"Main process received {sig_names[signum]}, exiting")
sys.exit(1)
# pass SIGINT/SIGTERM to children if the parent is being terminated
signal.signal(signal.SIGINT, sigkill_handler)
signal.signal(signal.SIGTERM, sigkill_handler)
process = subprocess.Popen(cmd, env=current_env, stdout=None, stderr=None)
processes.append(process)
try:
alive_processes = set(processes)
while len(alive_processes):
finished_processes = []
for process in alive_processes:
if process.poll() is None:
# the process is still running
continue
else:
if process.returncode != 0:
last_return_code = process.returncode # for sigkill_handler
sigkill_handler(signal.SIGTERM, None) # not coming back
else:
# exited cleanly
finished_processes.append(process)
alive_processes = set(alive_processes) - set(finished_processes)
time.sleep(1)
finally:
# close open file descriptors
pass
def dist_add_replicas(
replicas_type: str,
kubeconfig: str,
replicas: int,
coordinator_name: str,
namespace: str,
cpus: int,
gpus: int,
memory: str,
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
res = {"replicas": replicas}
if cpus > 0:
res['cpus'] = cpus
if gpus > 0:
res['gpus'] = gpus
if memory:
res['memory'] = memory
if replicas_type == 'collector':
data['collectors'] = res
elif replicas_type == 'learner':
data['learners'] = res
cmd = 'curl -X POST $KUBERNETES_SERVER_URL/v1alpha1/replicas ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} add successfully')
else:
print(f'Failed to add {replicas_type}, return code: {ret}, message: {msg}')
def dist_delete_replicas(
replicas_type: str, kubeconfig: str, replicas: int, coordinator_name: str, namespace: str
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
if replicas_type == 'collector':
data['collectors'] = {"replicas": replicas}
elif replicas_type == 'learner':
data['learners'] = {"replicas": replicas}
cmd = 'curl -X DELETE $KUBERNETES_SERVER_URL/v1alpha1/replicas ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} delete successfully')
else:
print(f'Failed to delete {replicas_type}, return code: {ret}, message: {msg}')
def dist_restart_replicas(
replicas_type: str, kubeconfig: str, coordinator_name: str, namespace: str, restart_pod_name: str
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
assert restart_pod_name, "Please provide restart pod name with --restart-pod-name"
if replicas_type == 'collector':
data['collectors'] = [restart_pod_name]
elif replicas_type == 'learner':
data['learners'] = [restart_pod_name]
cmd = 'curl -X POST $KUBERNETES_SERVER_URL/v1alpha1/replicas/failed ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} restart successfully')
else:
print(f'Failed to restart {replicas_type}, return code: {ret}, message: {msg}')