zjowowen's picture
init space
079c32c
raw
history blame
8.26 kB
import random
import time
from collections import namedtuple
import pytest
import torch
import numpy as np
from easydict import EasyDict
from functools import partial
import gym
from ding.envs.env.base_env import BaseEnvTimestep
from ding.envs.env_manager.base_env_manager import EnvState
from ding.envs.env_manager import BaseEnvManager, SyncSubprocessEnvManager, AsyncSubprocessEnvManager
from ding.torch_utils import to_tensor, to_ndarray, to_list
from ding.utils import deep_merge_dicts
class FakeEnv(object):
def __init__(self, cfg):
self._scale = cfg.scale
self._target_time = random.randint(3, 6) * self._scale
self._current_time = 0
self._name = cfg['name']
self._id = time.time()
self._stat = None
self._seed = 0
self._data_count = 0
self.timeout_flag = False
self._launched = False
self._state = EnvState.INIT
self._dead_once = False
self.observation_space = gym.spaces.Box(
low=np.array([-1.0, -1.0, -8.0]), high=np.array([1.0, 1.0, 8.0]), shape=(3, ), dtype=np.float32
)
self.action_space = gym.spaces.Box(low=-2.0, high=2.0, shape=(1, ), dtype=np.float32)
self.reward_space = gym.spaces.Box(
low=-1 * (3.14 * 3.14 + 0.1 * 8 * 8 + 0.001 * 2 * 2), high=0.0, shape=(1, ), dtype=np.float32
)
def reset(self, stat=None):
if isinstance(stat, str) and stat == 'error':
self.dead()
if isinstance(stat, str) and stat == 'error_once':
# Die on every two reset with error_once stat.
if self._dead_once:
self._dead_once = False
self.dead()
else:
self._dead_once = True
if isinstance(stat, str) and stat == "wait":
if self.timeout_flag: # after step(), the reset can hall with status of timeout
time.sleep(5)
if isinstance(stat, str) and stat == "block":
self.block()
self._launched = True
self._current_time = 0
self._stat = stat
self._state = EnvState.RUN
return to_ndarray(torch.randn(3))
def step(self, action):
assert self._launched
assert not self._state == EnvState.ERROR
self.timeout_flag = True # after one step, enable timeout flag
if isinstance(action, str) and action == 'error':
self.dead()
if isinstance(action, str) and action == 'catched_error':
return BaseEnvTimestep(None, None, True, {'abnormal': True})
if isinstance(action, str) and action == "wait":
if self.timeout_flag: # after step(), the reset can hall with status of timeout
time.sleep(3)
if isinstance(action, str) and action == 'block':
self.block()
obs = to_ndarray(torch.randn(3))
reward = to_ndarray(torch.randint(0, 2, size=[1]).numpy())
done = self._current_time >= self._target_time
if done:
self._state = EnvState.DONE
simulation_time = random.uniform(0.5, 1) * self._scale
info = {'name': self._name, 'time': simulation_time, 'tgt': self._target_time, 'cur': self._current_time}
time.sleep(simulation_time)
self._current_time += simulation_time
self._data_count += 1
return BaseEnvTimestep(obs, reward, done, info)
def dead(self):
self._state = EnvState.ERROR
raise RuntimeError("env error, current time {}".format(self._current_time))
def block(self):
self._state = EnvState.ERROR
time.sleep(1000)
def close(self):
self._launched = False
self._state = EnvState.INIT
def seed(self, seed):
self._seed = seed
@property
def name(self):
return self._name
@property
def time_id(self):
return self._id
def user_defined(self):
pass
def __repr__(self):
return self._name
class FakeAsyncEnv(FakeEnv):
def reset(self, stat=None):
super().reset(stat)
time.sleep(random.randint(1, 3) * self._scale)
return to_ndarray(torch.randn(3))
class FakeGymEnv(FakeEnv):
def __init__(self, cfg):
super().__init__(cfg)
self.metadata = "fake metadata"
self.action_space = gym.spaces.Box(low=-2.0, high=2.0, shape=(4, ), dtype=np.float32)
def random_action(self) -> np.ndarray:
random_action = self.action_space.sample()
if isinstance(random_action, np.ndarray):
pass
elif isinstance(random_action, int):
random_action = to_ndarray([random_action], dtype=np.int64)
elif isinstance(random_action, dict):
random_action = to_ndarray(random_action)
else:
raise TypeError(
'`random_action` should be either int/np.ndarray or dict of int/np.ndarray, but get {}: {}'.format(
type(random_action), random_action
)
)
return random_action
class FakeModel(object):
def forward(self, obs):
if random.random() > 0.5:
return {k: [] for k in obs}
else:
env_num = len(obs)
exec_env = random.randint(1, env_num + 1)
keys = list(obs.keys())[:exec_env]
return {k: [] for k in keys}
@pytest.fixture(scope='class')
def setup_model_type():
return FakeModel
def get_base_manager_cfg(env_num=3):
manager_cfg = {
'env_cfg': [{
'name': 'name{}'.format(i),
'scale': 1.0,
} for i in range(env_num)],
'episode_num': 2,
'reset_timeout': 10,
'step_timeout': 8,
'max_retry': 5,
}
return EasyDict(manager_cfg)
def get_subprecess_manager_cfg(env_num=3):
manager_cfg = {
'env_cfg': [{
'name': 'name{}'.format(i),
'scale': 1.0,
} for i in range(env_num)],
'episode_num': 2,
#'step_timeout': 8,
#'reset_timeout': 10,
'connect_timeout': 8,
'step_timeout': 5,
'max_retry': 2,
}
return EasyDict(manager_cfg)
def get_gym_vector_manager_cfg(env_num=3):
manager_cfg = {
'env_cfg': [{
'name': 'name{}'.format(i),
} for i in range(env_num)],
'episode_num': 2,
'connect_timeout': 8,
'step_timeout': 5,
'max_retry': 2,
'share_memory': True
}
return EasyDict(manager_cfg)
@pytest.fixture(scope='function')
def setup_base_manager_cfg():
manager_cfg = get_base_manager_cfg(3)
env_cfg = manager_cfg.pop('env_cfg')
manager_cfg['env_fn'] = [partial(FakeEnv, cfg=c) for c in env_cfg]
return deep_merge_dicts(BaseEnvManager.default_config(), EasyDict(manager_cfg))
@pytest.fixture(scope='function')
def setup_fast_base_manager_cfg():
manager_cfg = get_base_manager_cfg(3)
env_cfg = manager_cfg.pop('env_cfg')
for e in env_cfg:
e['scale'] = 0.1
manager_cfg['env_fn'] = [partial(FakeEnv, cfg=c) for c in env_cfg]
return deep_merge_dicts(BaseEnvManager.default_config(), EasyDict(manager_cfg))
@pytest.fixture(scope='function')
def setup_sync_manager_cfg():
manager_cfg = get_subprecess_manager_cfg(3)
env_cfg = manager_cfg.pop('env_cfg')
# TODO(nyz) test fail when shared_memory = True
manager_cfg['shared_memory'] = False
manager_cfg['env_fn'] = [partial(FakeEnv, cfg=c) for c in env_cfg]
return deep_merge_dicts(SyncSubprocessEnvManager.default_config(), EasyDict(manager_cfg))
@pytest.fixture(scope='function')
def setup_async_manager_cfg():
manager_cfg = get_subprecess_manager_cfg(3)
env_cfg = manager_cfg.pop('env_cfg')
manager_cfg['env_fn'] = [partial(FakeAsyncEnv, cfg=c) for c in env_cfg]
manager_cfg['shared_memory'] = False
return deep_merge_dicts(AsyncSubprocessEnvManager.default_config(), EasyDict(manager_cfg))
@pytest.fixture(scope='function')
def setup_gym_vector_manager_cfg():
manager_cfg = get_subprecess_manager_cfg(3)
env_cfg = manager_cfg.pop('env_cfg')
manager_cfg['env_fn'] = [partial(FakeGymEnv, cfg=c) for c in env_cfg]
manager_cfg['shared_memory'] = False
return EasyDict(manager_cfg)