zjowowen's picture
init space
079c32c
raw
history blame
2.1 kB
import gym
from ditk import logging
from ding.model.template.qac_dist import QACDIST
from ding.policy import D4PGPolicy
from ding.envs import DingEnvWrapper, BaseEnvManagerV2
from ding.data import DequeBuffer
from ding.data.buffer.middleware import PriorityExperienceReplay
from ding.config import compile_config
from ding.framework import task
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \
CkptSaver, nstep_reward_enhancer
from ding.utils import set_pkg_seed
from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv
from dizoo.classic_control.pendulum.config.pendulum_d4pg_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = QACDIST(**cfg.policy.model)
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
buffer_.use(PriorityExperienceReplay(buffer_, IS_weight=True))
policy = D4PGPolicy(cfg.policy, model=model)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(
StepCollector(cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size)
)
task.use(nstep_reward_enhancer(cfg))
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100))
task.run()
if __name__ == "__main__":
main()