|
import torch |
|
import numpy as np |
|
import pytest |
|
|
|
from ding.model import ConvEncoder, FCEncoder, IMPALAConvEncoder |
|
from ding.torch_utils import is_differentiable |
|
|
|
B = 4 |
|
C, H, W = 3, 128, 128 |
|
|
|
|
|
@pytest.mark.unittest |
|
class TestEncoder: |
|
|
|
def output_check(self, model, outputs): |
|
loss = outputs.sum() |
|
is_differentiable(loss, model) |
|
|
|
def test_conv_encoder(self): |
|
inputs = torch.randn(B, C, H, W) |
|
model = ConvEncoder((C, H, W), hidden_size_list=[32, 48, 64, 64, 128], activation=torch.nn.Tanh()) |
|
print(model) |
|
outputs = model(inputs) |
|
self.output_check(model, outputs) |
|
assert outputs.shape == (B, 128) |
|
|
|
def test_dreamer_conv_encoder(self): |
|
inputs = torch.randn(B, C, H, W) |
|
model = ConvEncoder( |
|
(C, H, W), |
|
hidden_size_list=[32, 64, 128, 256, 128], |
|
activation=torch.nn.SiLU(), |
|
kernel_size=[4, 4, 4, 4], |
|
layer_norm=True |
|
) |
|
print(model) |
|
outputs = model(inputs) |
|
self.output_check(model, outputs) |
|
assert outputs.shape == (B, 128) |
|
|
|
def test_fc_encoder(self): |
|
inputs = torch.randn(B, 32) |
|
hidden_size_list = [128 for _ in range(3)] |
|
model = FCEncoder(32, hidden_size_list, res_block=True, activation=torch.nn.Tanh()) |
|
print(model) |
|
outputs = model(inputs) |
|
self.output_check(model, outputs) |
|
assert outputs.shape == (B, hidden_size_list[-1]) |
|
|
|
hidden_size_list = [64, 128, 256] |
|
model = FCEncoder(32, hidden_size_list, res_block=False, activation=torch.nn.Tanh()) |
|
print(model) |
|
outputs = model(inputs) |
|
self.output_check(model, outputs) |
|
assert outputs.shape == (B, hidden_size_list[-1]) |
|
|
|
def test_impalaconv_encoder(self): |
|
inputs = torch.randn(B, 3, 64, 64) |
|
model = IMPALAConvEncoder(obs_shape=(3, 64, 64)) |
|
print(model) |
|
outputs = model(inputs) |
|
self.output_check(model, outputs) |
|
assert outputs.shape == (B, 256) |
|
|