|
import torch |
|
import numpy as np |
|
import pytest |
|
from itertools import product |
|
|
|
from ding.model.template import QACDIST |
|
from ding.torch_utils import is_differentiable |
|
from ding.utils import squeeze |
|
|
|
B = 4 |
|
T = 6 |
|
embedding_size = 32 |
|
action_shape_args = [(6, ), [ |
|
1, |
|
]] |
|
args = list(product(*[action_shape_args, ['regression', 'reparameterization']])) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('action_shape, action_space', args) |
|
class TestQACDIST: |
|
|
|
def test_fcqac_dist(self, action_shape, action_space): |
|
N = 32 |
|
inputs = {'obs': torch.randn(B, N), 'action': torch.randn(B, squeeze(action_shape))} |
|
model = QACDIST( |
|
obs_shape=(N, ), |
|
action_shape=action_shape, |
|
action_space=action_space, |
|
critic_head_hidden_size=embedding_size, |
|
actor_head_hidden_size=embedding_size, |
|
) |
|
|
|
q = model(inputs, mode='compute_critic') |
|
is_differentiable(q['q_value'].sum(), model.critic) |
|
|
|
if isinstance(action_shape, int): |
|
assert q['q_value'].shape == (B, 1) |
|
assert q['distribution'].shape == (B, 1, 51) |
|
elif len(action_shape) == 1: |
|
assert q['q_value'].shape == (B, 1) |
|
assert q['distribution'].shape == (B, 1, 51) |
|
|
|
|
|
print(model) |
|
if action_space == 'regression': |
|
action = model(inputs['obs'], mode='compute_actor')['action'] |
|
if squeeze(action_shape) == 1: |
|
assert action.shape == (B, ) |
|
else: |
|
assert action.shape == (B, squeeze(action_shape)) |
|
assert action.eq(action.clamp(-1, 1)).all() |
|
is_differentiable(action.sum(), model.actor) |
|
elif action_space == 'reparameterization': |
|
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] |
|
assert mu.shape == (B, *action_shape) |
|
assert sigma.shape == (B, *action_shape) |
|
is_differentiable(mu.sum() + sigma.sum(), model.actor) |
|
|